1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::{ops::{Deref, DerefMut}, mem::MaybeUninit};

use crate::vector::VectorViewMut;

pub mod caching;

///
/// Trait for objects that can provide memory, often for short-term use.
/// This includes naive implementations like [`AllocatingMemoryProvider`] that
/// just allocate memory, or alternatively all kinds of memory pools and recyclers
/// (e.g. [`caching::CachingMemoryProvider`]).
/// 
/// This is related to [`std::alloc::Allocator`], but less restrictive, as it may
/// return objects with certain structure. In particular, it naturally allows e.g.
/// memory pools or memory recycling.
/// 
/// It is usually used when certain objects or algorithms need frequent allocations
/// (often all of the same size), either because they need temporary, internal memory,
/// or they represent rings and have to allocate memory for elements. On the other hand,
/// if a struct just needs to store some data during its lifetime, memory pooling is
/// usually not useful, and a standard `Vec` is often used instead.
/// 
pub trait MemoryProvider<T> {

    type Object: Deref<Target = [T]> + DerefMut + VectorViewMut<T>;

    unsafe fn get_new<F: FnOnce(&mut [MaybeUninit<T>])>(&self, size: usize, initializer: F) -> Self::Object;

    fn get_new_init<F: FnMut(usize) -> T>(&self, size: usize, mut initializer: F) -> Self::Object {
        unsafe {
            self.get_new(size, |mem| {
                for i in 0..mem.len() {
                    mem[i] = MaybeUninit::new(initializer(i))
                }
            })
        }
    }

    fn try_get_new_init<E, F: FnMut(usize) -> Result<T, E>>(&self, size: usize, mut initializer: F) -> Result<Self::Object, E> {
        unsafe {
            let mut aborted = None;
            let result = self.get_new(size, |mem| {
                let mut i = 0;
                while i < mem.len() {
                    // note that this will leak memory if initializer(i) panics
                    match initializer(i) {
                        Ok(val) => {
                            mem[i] = MaybeUninit::new(val);
                            i += 1;
                        },
                        Err(err) => {
                            aborted = Some(err);
                            // drop the previously initialized memory
                            // note that this does not prevent a memory leak in the panic case
                            for j in 0..i {
                                mem[j].assume_init_drop();
                            }
                            break;
                        }
                    };
                }
            });
            if let Some(err) = aborted {
                Err(err)
            } else {
                Ok(result)
            }
        }
    }
}

pub trait GrowableMemoryProvider<T>: MemoryProvider<T> {

    fn shrink(&self, el: &mut Self::Object, new_len: usize);

    unsafe fn grow<F: FnOnce(&mut [MaybeUninit<T>])>(&self, el: &mut Self::Object, new_size: usize, initializer: F);

    fn grow_init<F: FnMut(usize) -> T>(&self, el: &mut Self::Object, new_size: usize, mut initializer: F) {
        assert!(new_size > el.len());
        let old_len = el.len();
        unsafe {
            self.grow(el, new_size, |mem| {
                for i in 0..mem.len() {
                    mem[i] = MaybeUninit::new(initializer(old_len + i))
                }
            })
        }
    }

}

#[derive(Copy, Clone)]
pub struct AllocatingMemoryProvider;

impl<T> MemoryProvider<T> for AllocatingMemoryProvider {
    
    type Object = Vec<T>;

    unsafe fn get_new<F: FnOnce(&mut [MaybeUninit<T>])>(&self, size: usize, initializer: F) -> Self::Object {
        let mut result = Box::new_uninit_slice(size);
        initializer(&mut *result);
        return result.assume_init().into_vec();
    }
}

impl<T> GrowableMemoryProvider<T> for AllocatingMemoryProvider {
    
    unsafe fn grow<F: FnOnce(&mut [MaybeUninit<T>])>(&self, el: &mut Vec<T>, new_size: usize, initializer: F) {
        assert!(new_size > el.len());
        let old_len = el.len();
        el.reserve(new_size - old_len);
        initializer(&mut el.spare_capacity_mut()[..(new_size - old_len)]);
        el.set_len(new_size);
    }

    fn shrink(&self, el: &mut Self::Object, new_len: usize) {
        el.truncate(new_len)
    }
}

pub static ALLOCATING_MEMORY_PROVIDER_SINGLETON: AllocatingMemoryProvider = AllocatingMemoryProvider;

impl Default for AllocatingMemoryProvider {

    fn default() -> Self {
        AllocatingMemoryProvider
    }
}

#[derive(Clone, Copy)]
pub struct LoggingMemoryProvider {
    description: &'static str
}

impl LoggingMemoryProvider {

    pub const fn new(description: &'static str) -> Self {
        LoggingMemoryProvider { description }
    }
}

impl<'a, T> MemoryProvider<T> for &'a LoggingMemoryProvider {
    
    type Object = Vec<T>;

    unsafe fn get_new<F: FnOnce(&mut [MaybeUninit<T>])>(&self, size: usize, initializer: F) -> Self::Object {
        println!("[{}]: Allocating {} entries of size {}", self.description, size, std::mem::size_of::<T>());
        AllocatingMemoryProvider.get_new(size, initializer)
    }
}

impl<'a, T> GrowableMemoryProvider<T> for &'a LoggingMemoryProvider {
    
    unsafe fn grow<F: FnOnce(&mut [MaybeUninit<T>])>(&self, el: &mut Vec<T>, new_size: usize, initializer: F) {
        assert!(new_size > el.len());
        let old_len = el.len();
        el.reserve(new_size - old_len);
        initializer(&mut el.spare_capacity_mut()[..(new_size - old_len)]);
        el.set_len(new_size);
    }

    fn shrink(&self, el: &mut Self::Object, new_len: usize) {
        el.truncate(new_len)
    }
}

#[cfg(not(feature = "log_memory"))]
pub type DefaultMemoryProvider = AllocatingMemoryProvider;

#[cfg(feature = "log_memory")]
pub type DefaultMemoryProvider = &'static LoggingMemoryProvider;

///
/// Returns an expression that evaluates to an identifier for the current function.
/// The exact syntax of that expression is not specified, and the value should
/// only be used for debugging/tracing purposes.
/// 
#[macro_export]
macro_rules! current_function {
    () => {{
        struct LocalMemoryProvider;
        std::any::type_name::<LocalMemoryProvider>()
    }}
}

///
/// Returns an instance of the current default memory provider.
/// 
/// The used memory provider can change depending on enabled features
/// and conditional compilation.
/// 
#[macro_export]
#[cfg(not(feature = "log_memory"))]
macro_rules! default_memory_provider {
    () => {
        $crate::mempool::ALLOCATING_MEMORY_PROVIDER_SINGLETON
    };
}

///
/// Returns an instance of the current default memory provider.
/// 
/// The used memory provider can change depending on enabled features
/// and conditional compilation.
/// 
#[macro_export]
#[cfg(feature = "log_memory")]
macro_rules! default_memory_provider {
    () => {
        {
            static LOCAL_MEMORY_PROVIDER: $crate::mempool::LoggingMemoryProvider = $crate::mempool::LoggingMemoryProvider::new($crate::current_function!());
            &LOCAL_MEMORY_PROVIDER as &'static $crate::mempool::LoggingMemoryProvider
        }
    };
}