1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use std::mem::MaybeUninit;
use std::ptr::addr_of_mut;
use std::rc::Rc;
use std::collections::*;
use std::collections::hash_map::Entry;
use std::ops::{Deref, DerefMut, Index, IndexMut};
use std::cell::RefCell;

use crate::matrix::submatrix::AsPointerToSlice;
use crate::vector::{VectorView, VectorViewMut};
use crate::default_memory_provider;
use super::MemoryProvider;

pub struct CachedMemoryData<T: Sized> {
    data: Option<Box<[MaybeUninit<T>]>>,
    return_to: Rc<CachingMemoryProvider<T>>,
}

impl<T: Sized> Deref for CachedMemoryData<T> {

    type Target = [T];

    fn deref<'a>(&'a self) -> &'a Self::Target {
        unsafe {
            MaybeUninit::slice_assume_init_ref(self.data.as_ref().unwrap())
        }
    }
}

unsafe impl<T: Sized> AsPointerToSlice<T> for CachedMemoryData<T> {

    unsafe fn get_pointer(self_: std::ptr::NonNull<Self>) -> std::ptr::NonNull<T> {
        unsafe {
            let self_ptr = self_.as_ptr();
            let data_ptr = std::mem::transmute::<*mut Option<Box<[MaybeUninit<T>]>>, *mut Box<[MaybeUninit<T>]>>(addr_of_mut!((*self_ptr).data));
            std::ptr::NonNull::new((*data_ptr).as_mut_ptr() as *mut MaybeUninit<T>).unwrap().cast()
        }
    }
}

impl<T: Sized> DerefMut for CachedMemoryData<T> {

    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe {
            MaybeUninit::slice_assume_init_mut(self.data.as_mut().unwrap())
        }
    }
}

impl<T: Sized> VectorView<T> for CachedMemoryData<T> {

    fn at(&self, i: usize) -> &T {
        <[T] as Index<usize>>::index(self, i)
    }

    fn len(&self) -> usize {
        <[T]>::len(self)
    }
}

impl<T: Sized> VectorViewMut<T> for CachedMemoryData<T> {

    fn at_mut(&mut self, i: usize) -> &mut T {
        <[T] as IndexMut<usize>>::index_mut(self, i)
    }
}

impl<T: Sized> Drop for CachedMemoryData<T> {

    fn drop(&mut self) {
        unsafe {
            for i in 0..self.len() {
                self.data.as_mut().unwrap()[i].assume_init_drop();
            }
            self.return_to.put_back(self.data.take().unwrap())
        }
    }
}

pub struct CachingMemoryProvider<T: Sized> {
    stored_arrays: RefCell<HashMap<usize, Vec<Box<[MaybeUninit<T>]>>>>,
    max_stored: usize
}

impl<T: Sized> CachingMemoryProvider<T> {

    pub fn new(max_store_per_size: usize) -> Rc<Self> {
        Rc::new(Self {
            stored_arrays: RefCell::new(HashMap::new()),
            max_stored: max_store_per_size
        })
    }

    fn put_back(&self, element: Box<[MaybeUninit<T>]>) {
        let mut locked = self.stored_arrays.borrow_mut();
        match locked.entry(element.len()) {
            Entry::Occupied(mems) if mems.get().len() >= self.max_stored => {},
            Entry::Occupied(mut mems) => mems.get_mut().push(element),
            Entry::Vacant(mems) => { mems.insert(vec![element]); }
        };
    }

    unsafe fn create_new(&self, size: usize) -> Box<[MaybeUninit<T>]> {
        default_memory_provider!().get_new(size, |_| {}).into_boxed_slice()
    }
}

impl<T: Sized> MemoryProvider<T> for Rc<CachingMemoryProvider<T>> {

    type Object = CachedMemoryData<T>;

    unsafe fn get_new<F: FnOnce(&mut [MaybeUninit<T>])>(&self, size: usize, initializer: F) -> Self::Object {
        let mut locked = self.stored_arrays.borrow_mut();
        if let Some(mems) = locked.get_mut(&size) {
            if let Some(mut result) = mems.pop() {
                initializer(&mut result);
                return CachedMemoryData {
                    data: Some(result),
                    return_to: self.clone()
                };
            }
        }
        let mut result = self.create_new(size);
        initializer(&mut *result);
        return CachedMemoryData {
            data: Some(result),
            return_to: self.clone()
        };
    }
}

#[cfg(test)]
use std::sync::Mutex;
#[cfg(test)]
use std::sync::atomic::AtomicBool;

#[test]
fn test_caching_memory_provider() {
    let mem_provider = CachingMemoryProvider::new(2);
    let b_ptr = {
        let a = mem_provider.get_new_init(3, |_| 0);
        let b = mem_provider.get_new_init(3, |_| 1);
        let c = mem_provider.get_new_init(3, |_| 2);
        assert_eq!(0, a[0]);
        assert_eq!(1, b[1]);
        assert_eq!(2, c[1]);
        (&*b).as_ptr()
    };
    let c = mem_provider.get_new_init(3, |_| 2);
    assert_eq!((&*c).as_ptr(), b_ptr);
    assert_eq!(2, c[1]);
}

#[allow(unused)]
#[test]
fn test_caching_memory_provider_drop_exactly_once() {

    struct Test(i32);

    static DROPPED: Mutex<Option<HashSet<i32>>> = Mutex::new(None);
    static FAILED: AtomicBool = AtomicBool::new(false);

    *DROPPED.lock().unwrap() = Some(HashSet::new());

    impl Drop for Test {

        fn drop(&mut self) {
            let mut locked = DROPPED.lock().unwrap();
            let locked = locked.as_mut().unwrap();
            if locked.contains(&self.0) {
                FAILED.fetch_or(true, std::sync::atomic::Ordering::SeqCst);
            } else {
                locked.insert(self.0);
            }
        }
    }
    {
        let mem_provider = CachingMemoryProvider::new(2);
        {
            let a = mem_provider.get_new_init(1, |_| Test(0));
            let b = mem_provider.get_new_init(1, |_| Test(1));
            let c = mem_provider.get_new_init(1, |_| Test(2));

            let a = mem_provider.get_new_init(2, |i| Test(6 + i as i32));
            let b = mem_provider.get_new_init(2, |i| Test(8 + i as i32));
            let c = mem_provider.get_new_init(2, |i| Test(10 + i as i32));
        }
        {
            let a = mem_provider.get_new_init(1, |_| Test(3));
            let b = mem_provider.get_new_init(1, |_| Test(4));
            let c = mem_provider.get_new_init(1, |_| Test(5));
            
            let a = mem_provider.get_new_init(2, |i| Test(12 + i as i32));
            let b = mem_provider.get_new_init(2, |i| Test(14 + i as i32));
            let c = mem_provider.get_new_init(2, |i| Test(16 + i as i32));
        }
    }

    assert!(!FAILED.load(std::sync::atomic::Ordering::SeqCst));
    assert_eq!(*DROPPED.lock().unwrap().as_ref().unwrap(), (0..18).collect());
}