fdt_parser/
fdt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
use core::{iter, ptr::NonNull};

use log::debug;

use crate::{
    chosen::Chosen, error::*, meta::MetaData, node::Node, read::FdtReader, FdtHeader, MemoryRegion,
    Phandle, Token,
};

/// The reference to the FDT raw data.
#[derive(Clone)]
pub struct Fdt<'a> {
    pub(crate) header: FdtHeader,
    pub(crate) data: &'a [u8],
}

impl<'a> Fdt<'a> {
    /// Create a new FDT from raw data.
    pub fn from_bytes(data: &'a [u8]) -> FdtResult<'a, Self> {
        let header = FdtHeader::from_bytes(data)?;

        header.valid_magic()?;

        Ok(Self { header, data })
    }

    /// Create a new FDT from a pointer.
    pub fn from_ptr(ptr: NonNull<u8>) -> FdtResult<'a, Self> {
        let tmp_header =
            unsafe { core::slice::from_raw_parts(ptr.as_ptr(), core::mem::size_of::<FdtHeader>()) };
        let real_size = FdtHeader::from_bytes(tmp_header)?.totalsize.get() as usize;

        Self::from_bytes(unsafe { core::slice::from_raw_parts(ptr.as_ptr(), real_size) })
    }

    fn reader(&'a self, offset: usize) -> FdtReader<'a> {
        FdtReader::new(&self.data[offset..])
    }

    pub fn version(&self) -> usize {
        self.header.version.get() as _
    }

    /// This field shall contain the physical ID of the system’s boot CPU. It shall be identical to the physical ID given in the
    /// reg property of that CPU node within the devicetree.
    pub fn boot_cpuid_phys(&self) -> u32 {
        self.header.boot_cpuid_phys.get()
    }

    /// The memory reservation block provides the client program with a list of areas in physical memory which are reserved; that
    /// is, which shall not be used for general memory allocations. It is used to protect vital data structures from being overwritten
    /// by the client program.
    pub fn memory_reservation_block(&self) -> impl Iterator<Item = MemoryRegion> + '_ {
        let mut reader = self.reader(self.header.off_mem_rsvmap.get() as _);
        iter::from_fn(move || match reader.reserved_memory() {
            Some(region) => {
                if region.address == 0 && region.size == 0 {
                    None
                } else {
                    Some(region.into())
                }
            }
            None => None,
        })
    }

    pub(crate) fn get_str(&'a self, offset: usize) -> FdtResult<'a, &'a str> {
        let string_bytes = &self.data[self.header.strings_range()];
        let reader = FdtReader::new(&string_bytes[offset..]);
        reader.peek_str()
    }

    pub fn all_nodes(&'a self) -> impl Iterator<Item = Node<'a>> {
        let struct_bytes = &self.data[self.header.struct_range()];
        let reader = FdtReader::new(struct_bytes);
        FdtIter {
            fdt: self,
            current_level: 0,
            reader,
            stack: Default::default(),
            node_reader: None,
            node_name: "",
        }
    }

    pub fn chosen(&'a self) -> Option<Chosen<'a>> {
        self.find_node("/chosen").map(|o| Chosen::new(o))
    }

    pub fn get_node_by_phandle(&'a self, phandle: Phandle) -> Option<Node<'a>> {
        self.all_nodes()
            .find(|x| match x.phandle() {
                Some(p) => p.eq(&phandle),
                None => false,
            })
            .clone()
    }

    pub fn get_node_by_name(&'a self, name: &str) -> Option<Node<'a>> {
        self.all_nodes().find(|x| x.name().eq(name)).clone()
    }

    pub fn find_compatible(&'a self, with: &[&str]) -> Option<Node<'a>> {
        self.all_nodes().find(|n| {
            n.compatible()
                .and_then(|mut compats| {
                    compats.find(|c| match c {
                        Ok(c) => with.contains(c),
                        Err(_) => false,
                    })
                })
                .is_some()
        })
    }

    /// if path start with '/' then search by path, else search by aliases
    pub fn find_node(&'a self, path: &str) -> Option<Node<'a>> {
        if path.starts_with("/") {
            let mut out = None;
            let mut parts = path.split("/").filter(|o| !o.is_empty());
            let mut want = "/";
            for node in self.all_nodes() {
                let eq = if path.contains("@") {
                    node.name.eq(want)
                } else {
                    let name = node.name.split("@").next().unwrap();
                    name.eq(want)
                };
                if eq {
                    out = Some(node.clone());
                    want = match parts.next() {
                        Some(t) => {
                            out = None;
                            t
                        }
                        None => return out,
                    };
                }
            }
            out
        } else {
            let aliases = self.find_node("/aliases")?;
            for prop in aliases.propertys() {
                if prop.name.eq(path) {
                    let path = prop.str();
                    return self.find_node(path);
                }
            }
            None
        }
    }

    pub fn find_aliase(&'a self, name: &str) -> Option<&'a str> {
        let aliases = self.find_node("/aliases")?;
        for prop in aliases.propertys() {
            if prop.name.eq(name) {
                return Some(prop.str());
            }
        }
        None
    }
}

pub struct FdtIter<'a> {
    fdt: &'a Fdt<'a>,
    current_level: usize,
    reader: FdtReader<'a>,
    stack: [MetaData<'a>; 12],
    node_reader: Option<FdtReader<'a>>,
    node_name: &'a str,
}

impl<'a> FdtIter<'a> {
    fn get_meta_parent(&self) -> MetaData<'a> {
        let mut meta = MetaData::default();
        let level = match self.level_parent_index() {
            Some(l) => l,
            None => return MetaData::default(),
        } + 1;
        macro_rules! get_field {
            ($cell:ident) => {{
                let mut size = None;
                for i in (0..level).rev() {
                    if let Some(cell_size) = &self.stack[i].$cell {
                        size = Some(cell_size.clone());
                        break;
                    }
                }
                meta.$cell = size;
            }};
        }

        get_field!(address_cells);
        get_field!(size_cells);
        get_field!(clock_cells);
        get_field!(interrupt_cells);
        get_field!(gpio_cells);
        get_field!(dma_cells);
        get_field!(cooling_cells);
        get_field!(range);
        get_field!(interrupt_parent);

        meta
    }
    fn level_current_index(&self) -> usize {
        self.current_level - 1
    }
    fn level_parent_index(&self) -> Option<usize> {
        if self.level_current_index() > 0 {
            Some(self.level_current_index() - 1)
        } else {
            None
        }
    }

    fn handle_node_begin(&mut self) {
        self.current_level += 1;
        let i = self.level_current_index();
        self.stack[i] = MetaData::default();
        self.node_name = self.reader.take_unit_name().unwrap();
        self.node_reader = Some(self.reader.clone());
    }

    fn finish_node(&mut self) -> Option<Node<'a>> {
        let reader = self.node_reader.take()?;
        let level = self.current_level;
        let meta = self.stack[self.level_current_index()].clone();
        let meta_parent = self.get_meta_parent();

        let mut node = Node::new(self.fdt, level, self.node_name, reader, meta_parent, meta);
        let ranges = node.node_ranges();
        self.stack[self.level_current_index()].range = ranges.clone();
        let ph = node.node_interrupt_parent();
        self.stack[self.level_current_index()].interrupt_parent = ph;

        node.meta = self.stack[self.level_current_index()].clone();

        Some(node)
    }
}

impl<'a> Iterator for FdtIter<'a> {
    type Item = Node<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let token = self.reader.take_token()?;

            match token {
                Token::BeginNode => {
                    let node = self.finish_node();
                    self.handle_node_begin();
                    if node.is_some() {
                        return node;
                    }
                }
                Token::EndNode => {
                    let node = self.finish_node();
                    self.current_level -= 1;
                    if node.is_some() {
                        return node;
                    }
                }
                Token::Prop => {
                    let prop = self.reader.take_prop(self.fdt)?;
                    let index = self.level_current_index();
                    macro_rules! update_cell {
                        ($cell:ident) => {
                            self.stack[index].$cell = Some(prop.u32() as _)
                        };
                    }
                    match prop.name {
                        "#address-cells" => update_cell!(address_cells),
                        "#size-cells" => update_cell!(size_cells),
                        "#clock-cells" => update_cell!(clock_cells),
                        "#interrupt-cells" => update_cell!(interrupt_cells),
                        "#gpio-cells" => update_cell!(gpio_cells),
                        "#dma-cells" => update_cell!(dma_cells),
                        "#cooling-cells" => update_cell!(cooling_cells),
                        _ => {}
                    }
                }
                Token::End => {
                    return self.finish_node();
                }
                _ => {}
            }
        }
    }
}