Expand description
Simulation functions for functional data.
This module provides tools for generating synthetic functional data using the Karhunen-Loève expansion and various eigenfunction/eigenvalue configurations.
§Overview
Functional data can be simulated using the truncated Karhunen-Loève representation:
f_i(t) = μ(t) + Σ_{k=1}^{M} ξ_{ik} φ_k(t)where:
- μ(t) is the mean function
- φ_k(t) are orthonormal eigenfunctions
- ξ_{ik} ~ N(0, λ_k) are random scores with variances given by eigenvalues
§Eigenfunction Types
- Fourier: sin/cos basis functions, suitable for periodic data
- Legendre: Orthonormal Legendre polynomials on [0,1]
- Wiener: Eigenfunctions of the Wiener process
Enums§
Functions§
- add_
error_ curve - Add curve-level Gaussian noise to functional data.
- add_
error_ pointwise - Add pointwise Gaussian noise to functional data.
- eigenfunctions
- Unified eigenfunction computation.
- eigenvalues
- Unified eigenvalue computation.
- eigenvalues_
exponential - Generate eigenvalue sequence with exponential decay.
- eigenvalues_
linear - Generate eigenvalue sequence with linear decay.
- eigenvalues_
wiener - Generate Wiener process eigenvalues.
- fourier_
eigenfunctions - Compute Fourier eigenfunctions on [0,1].
- legendre_
eigenfunctions - Compute Legendre polynomial eigenfunctions on [0,1].
- sim_
fundata - Simulate functional data with specified eigenfunction and eigenvalue types.
- sim_kl
- Simulate functional data via Karhunen-Loève expansion.
- wiener_
eigenfunctions - Compute Wiener process eigenfunctions on [0,1].