coreutils_rs/common/io.rs
1use std::fs::{self, File};
2use std::io::{self, Read};
3use std::ops::Deref;
4use std::path::Path;
5
6#[cfg(target_os = "linux")]
7use std::sync::atomic::{AtomicBool, Ordering};
8
9use memmap2::{Mmap, MmapOptions};
10
11/// Holds file data — either zero-copy mmap or an owned Vec.
12/// Dereferences to `&[u8]` for transparent use.
13pub enum FileData {
14 Mmap(Mmap),
15 Owned(Vec<u8>),
16}
17
18impl Deref for FileData {
19 type Target = [u8];
20
21 fn deref(&self) -> &[u8] {
22 match self {
23 FileData::Mmap(m) => m,
24 FileData::Owned(v) => v,
25 }
26 }
27}
28
29/// Threshold below which we use read() instead of mmap.
30/// For files under 1MB, read() is faster since mmap has setup/teardown overhead
31/// (page table creation for up to 256 pages, TLB flush on munmap) that exceeds
32/// the zero-copy benefit.
33const MMAP_THRESHOLD: u64 = 1024 * 1024;
34
35/// Track whether O_NOATIME is supported to avoid repeated failed open() attempts.
36/// After the first EPERM, we never try O_NOATIME again (saves one syscall per file).
37#[cfg(target_os = "linux")]
38static NOATIME_SUPPORTED: AtomicBool = AtomicBool::new(true);
39
40/// Open a file with O_NOATIME on Linux to avoid atime inode writes.
41/// Caches whether O_NOATIME works to avoid double-open on every file.
42#[cfg(target_os = "linux")]
43fn open_noatime(path: &Path) -> io::Result<File> {
44 use std::os::unix::fs::OpenOptionsExt;
45 if NOATIME_SUPPORTED.load(Ordering::Relaxed) {
46 match fs::OpenOptions::new()
47 .read(true)
48 .custom_flags(libc::O_NOATIME)
49 .open(path)
50 {
51 Ok(f) => return Ok(f),
52 Err(ref e) if e.raw_os_error() == Some(libc::EPERM) => {
53 // O_NOATIME requires file ownership or CAP_FOWNER — disable globally
54 NOATIME_SUPPORTED.store(false, Ordering::Relaxed);
55 }
56 Err(e) => return Err(e), // Real error, propagate
57 }
58 }
59 File::open(path)
60}
61
62#[cfg(not(target_os = "linux"))]
63fn open_noatime(path: &Path) -> io::Result<File> {
64 File::open(path)
65}
66
67/// Read a file with zero-copy mmap for large files or read() for small files.
68/// Opens once with O_NOATIME, uses fstat for metadata to save a syscall.
69pub fn read_file(path: &Path) -> io::Result<FileData> {
70 let file = open_noatime(path)?;
71 let metadata = file.metadata()?;
72 let len = metadata.len();
73
74 if len > 0 && metadata.file_type().is_file() {
75 // Small files: exact-size read from already-open fd.
76 // Uses read_full into pre-sized buffer instead of read_to_end,
77 // which avoids the grow-and-probe pattern (saves 1-2 extra read() syscalls).
78 if len < MMAP_THRESHOLD {
79 let mut buf = vec![0u8; len as usize];
80 let n = read_full(&mut &file, &mut buf)?;
81 buf.truncate(n);
82 return Ok(FileData::Owned(buf));
83 }
84
85 // SAFETY: Read-only mapping. MAP_POPULATE pre-faults page table entries
86 // from the page cache in one batch kernel call, avoiding scattered demand
87 // faults during the scan. For warm cache (benchmark warmup), this is faster
88 // than demand faults even with fault-around (~160 faults for 10MB → 0 faults).
89 // For cold cache, the kernel reads ahead from disk during mmap().
90 match unsafe { MmapOptions::new().populate().map(&file) } {
91 Ok(mmap) => {
92 #[cfg(target_os = "linux")]
93 {
94 let _ = mmap.advise(memmap2::Advice::Sequential);
95 let _ = mmap.advise(memmap2::Advice::WillNeed);
96 }
97 Ok(FileData::Mmap(mmap))
98 }
99 Err(_) => {
100 // mmap failed — fall back to read
101 let mut buf = Vec::with_capacity(len as usize);
102 let mut reader = file;
103 reader.read_to_end(&mut buf)?;
104 Ok(FileData::Owned(buf))
105 }
106 }
107 } else if len > 0 {
108 // Non-regular file (special files) — read from open fd
109 let mut buf = Vec::new();
110 let mut reader = file;
111 reader.read_to_end(&mut buf)?;
112 Ok(FileData::Owned(buf))
113 } else {
114 Ok(FileData::Owned(Vec::new()))
115 }
116}
117
118/// Read a file entirely into a mutable Vec.
119/// Uses exact-size allocation from fstat + single read() for efficiency.
120/// Preferred over mmap when the caller needs mutable access (e.g., in-place decode).
121pub fn read_file_vec(path: &Path) -> io::Result<Vec<u8>> {
122 let file = open_noatime(path)?;
123 let metadata = file.metadata()?;
124 let len = metadata.len() as usize;
125 if len == 0 {
126 return Ok(Vec::new());
127 }
128 let mut buf = vec![0u8; len];
129 let n = read_full(&mut &file, &mut buf)?;
130 buf.truncate(n);
131 Ok(buf)
132}
133
134/// Read a file always using mmap, with MADV_HUGEPAGE + WILLNEED.
135/// Used by tac for large files (>= 16MB) that benefit from zero-copy
136/// vmsplice output and parallel scanning. Callers should use read_file_vec()
137/// for smaller files to avoid mmap page fault overhead.
138///
139/// No MAP_POPULATE: it synchronously faults all pages with 4KB BEFORE
140/// MADV_HUGEPAGE can take effect, causing ~25,600 minor faults for 100MB
141/// (~25ms). Without it, HUGEPAGE is set first, then WILLNEED triggers
142/// async readahead using 2MB pages (~50 faults = ~0.1ms).
143pub fn read_file_mmap(path: &Path) -> io::Result<FileData> {
144 let file = open_noatime(path)?;
145 let metadata = file.metadata()?;
146 let len = metadata.len();
147
148 if len > 0 && metadata.file_type().is_file() {
149 match unsafe { MmapOptions::new().map(&file) } {
150 Ok(mmap) => {
151 #[cfg(target_os = "linux")]
152 {
153 // HUGEPAGE first: must be set before any page faults occur.
154 // Reduces ~25,600 minor faults (4KB) to ~50 (2MB) for 100MB.
155 if len >= 2 * 1024 * 1024 {
156 let _ = mmap.advise(memmap2::Advice::HugePage);
157 }
158 let _ = mmap.advise(memmap2::Advice::WillNeed);
159 }
160 return Ok(FileData::Mmap(mmap));
161 }
162 Err(_) => {
163 // mmap failed — fall back to read
164 let mut buf = vec![0u8; len as usize];
165 let n = read_full(&mut &file, &mut buf)?;
166 buf.truncate(n);
167 return Ok(FileData::Owned(buf));
168 }
169 }
170 } else if len > 0 {
171 // Non-regular file (special files) — read from open fd
172 let mut buf = Vec::new();
173 let mut reader = file;
174 reader.read_to_end(&mut buf)?;
175 Ok(FileData::Owned(buf))
176 } else {
177 Ok(FileData::Owned(Vec::new()))
178 }
179}
180
181/// Get file size without reading it (for byte-count-only optimization).
182pub fn file_size(path: &Path) -> io::Result<u64> {
183 Ok(fs::metadata(path)?.len())
184}
185
186/// Read all bytes from stdin into a Vec.
187/// On Linux, uses raw libc::read() to bypass Rust's StdinLock/BufReader overhead.
188/// Uses a direct read() loop into a pre-allocated buffer instead of read_to_end(),
189/// which avoids Vec's grow-and-probe pattern (extra read() calls and memcpy).
190/// Callers should enlarge the pipe buffer via fcntl(F_SETPIPE_SZ) before calling.
191/// Uses the full spare capacity for each read() to minimize syscalls.
192pub fn read_stdin() -> io::Result<Vec<u8>> {
193 #[cfg(target_os = "linux")]
194 return read_stdin_raw();
195
196 #[cfg(not(target_os = "linux"))]
197 read_stdin_generic()
198}
199
200/// Raw libc::read() implementation for Linux — bypasses Rust's StdinLock
201/// and BufReader layers entirely. StdinLock uses an internal 8KB BufReader
202/// which adds an extra memcpy for every read; raw read() goes directly
203/// from the kernel pipe buffer to our Vec.
204///
205/// Pre-allocates 16MB to cover most workloads (benchmark = 10MB) without
206/// over-allocating. For inputs > 16MB, doubles capacity on demand.
207/// Each read() uses the full spare capacity to maximize bytes per syscall.
208///
209/// Note: callers (ftac, ftr, fbase64) are expected to enlarge the pipe
210/// buffer via fcntl(F_SETPIPE_SZ) before calling this function. We don't
211/// do it here to avoid accidentally shrinking a previously enlarged pipe.
212#[cfg(target_os = "linux")]
213fn read_stdin_raw() -> io::Result<Vec<u8>> {
214 const PREALLOC: usize = 16 * 1024 * 1024;
215
216 let mut buf: Vec<u8> = Vec::with_capacity(PREALLOC);
217
218 loop {
219 let spare_cap = buf.capacity() - buf.len();
220 if spare_cap < 1024 * 1024 {
221 // Grow by doubling (or at least 64MB) to minimize realloc count
222 let new_cap = (buf.capacity() * 2).max(buf.len() + PREALLOC);
223 buf.reserve(new_cap - buf.capacity());
224 }
225 let spare_cap = buf.capacity() - buf.len();
226 let start = buf.len();
227
228 // SAFETY: we read into the uninitialized spare capacity and extend
229 // set_len only by the number of bytes actually read.
230 let ret = unsafe {
231 libc::read(
232 0,
233 buf.as_mut_ptr().add(start) as *mut libc::c_void,
234 spare_cap,
235 )
236 };
237 if ret < 0 {
238 let err = io::Error::last_os_error();
239 if err.kind() == io::ErrorKind::Interrupted {
240 continue;
241 }
242 return Err(err);
243 }
244 if ret == 0 {
245 break;
246 }
247 unsafe { buf.set_len(start + ret as usize) };
248 }
249
250 Ok(buf)
251}
252
253/// Splice piped stdin to a memfd, then mmap for zero-copy access.
254/// Uses splice(2) to move data from the stdin pipe directly into a memfd's
255/// page cache (kernel→kernel, no userspace copy). Returns a mutable mmap.
256/// Returns None if stdin is not a pipe or splice fails.
257///
258/// For translate operations: caller can modify the mmap'd data in-place.
259/// For filter operations (delete, cut): caller reads from the mmap.
260#[cfg(target_os = "linux")]
261pub fn splice_stdin_to_mmap() -> io::Result<Option<memmap2::MmapMut>> {
262 use std::os::unix::io::FromRawFd;
263
264 // Check if stdin is a pipe
265 let mut stat: libc::stat = unsafe { std::mem::zeroed() };
266 if unsafe { libc::fstat(0, &mut stat) } != 0 {
267 return Ok(None);
268 }
269 if (stat.st_mode & libc::S_IFMT) != libc::S_IFIFO {
270 return Ok(None);
271 }
272
273 // Create memfd for receiving spliced data.
274 // Use raw syscall to avoid glibc version dependency (memfd_create added in glibc 2.27,
275 // but the syscall works on any kernel >= 3.17). This fixes cross-compilation to
276 // aarch64-unknown-linux-gnu with older sysroots.
277 let memfd =
278 unsafe { libc::syscall(libc::SYS_memfd_create, c"stdin_splice".as_ptr(), 0u32) as i32 };
279 if memfd < 0 {
280 return Ok(None); // memfd_create not supported, fallback
281 }
282
283 // Splice all data from stdin pipe to memfd (zero-copy: kernel moves pipe pages)
284 let mut total: usize = 0;
285 loop {
286 let n = unsafe {
287 libc::splice(
288 0,
289 std::ptr::null_mut(),
290 memfd,
291 std::ptr::null_mut(),
292 // Splice up to 1GB at a time (kernel will limit to actual pipe data)
293 1024 * 1024 * 1024,
294 libc::SPLICE_F_MOVE,
295 )
296 };
297 if n > 0 {
298 total += n as usize;
299 } else if n == 0 {
300 break; // EOF
301 } else {
302 let err = io::Error::last_os_error();
303 if err.kind() == io::ErrorKind::Interrupted {
304 continue;
305 }
306 unsafe { libc::close(memfd) };
307 return Ok(None); // splice failed, fallback to read
308 }
309 }
310
311 if total == 0 {
312 unsafe { libc::close(memfd) };
313 return Ok(None);
314 }
315
316 // Wrap memfd in a File for memmap2 API, then mmap it.
317 // MAP_SHARED allows in-place modification; populate prefaults pages.
318 let file = unsafe { File::from_raw_fd(memfd) };
319 let mmap = unsafe { MmapOptions::new().populate().map_mut(&file) };
320 drop(file); // Close memfd fd (mmap stays valid, kernel holds reference)
321
322 match mmap {
323 Ok(mut mm) => {
324 // Advise kernel for sequential access + hugepages
325 unsafe {
326 libc::madvise(
327 mm.as_mut_ptr() as *mut libc::c_void,
328 total,
329 libc::MADV_SEQUENTIAL,
330 );
331 if total >= 2 * 1024 * 1024 {
332 libc::madvise(
333 mm.as_mut_ptr() as *mut libc::c_void,
334 total,
335 libc::MADV_HUGEPAGE,
336 );
337 }
338 }
339 Ok(Some(mm))
340 }
341 Err(_) => Ok(None),
342 }
343}
344
345/// Generic read_stdin for non-Linux platforms.
346#[cfg(not(target_os = "linux"))]
347fn read_stdin_generic() -> io::Result<Vec<u8>> {
348 const PREALLOC: usize = 16 * 1024 * 1024;
349 const READ_BUF: usize = 4 * 1024 * 1024;
350
351 let mut stdin = io::stdin().lock();
352 let mut buf: Vec<u8> = Vec::with_capacity(PREALLOC);
353
354 loop {
355 let spare_cap = buf.capacity() - buf.len();
356 if spare_cap < READ_BUF {
357 buf.reserve(PREALLOC);
358 }
359 let spare_cap = buf.capacity() - buf.len();
360
361 let start = buf.len();
362 unsafe { buf.set_len(start + spare_cap) };
363 match stdin.read(&mut buf[start..start + spare_cap]) {
364 Ok(0) => {
365 buf.truncate(start);
366 break;
367 }
368 Ok(n) => {
369 buf.truncate(start + n);
370 }
371 Err(e) if e.kind() == io::ErrorKind::Interrupted => {
372 buf.truncate(start);
373 continue;
374 }
375 Err(e) => return Err(e),
376 }
377 }
378
379 Ok(buf)
380}
381
382/// Read as many bytes as possible into buf, retrying on partial reads.
383/// Ensures the full buffer is filled (or EOF reached), avoiding the
384/// probe-read overhead of read_to_end.
385/// Fast path: regular file reads usually return the full buffer on the first call.
386#[inline]
387fn read_full(reader: &mut impl Read, buf: &mut [u8]) -> io::Result<usize> {
388 // Fast path: first read() usually fills the entire buffer for regular files
389 let n = reader.read(buf)?;
390 if n == buf.len() || n == 0 {
391 return Ok(n);
392 }
393 // Slow path: partial read — retry to fill buffer (pipes, slow devices)
394 let mut total = n;
395 while total < buf.len() {
396 match reader.read(&mut buf[total..]) {
397 Ok(0) => break,
398 Ok(n) => total += n,
399 Err(e) if e.kind() == io::ErrorKind::Interrupted => continue,
400 Err(e) => return Err(e),
401 }
402 }
403 Ok(total)
404}