coreutils_rs/common/io.rs
1use std::fs::{self, File};
2use std::io::{self, Read};
3use std::ops::Deref;
4use std::path::Path;
5
6#[cfg(target_os = "linux")]
7use std::sync::atomic::{AtomicBool, Ordering};
8
9use memmap2::{Mmap, MmapOptions};
10
11/// Holds file data — either zero-copy mmap or an owned Vec.
12/// Dereferences to `&[u8]` for transparent use.
13pub enum FileData {
14 Mmap(Mmap),
15 Owned(Vec<u8>),
16}
17
18impl Deref for FileData {
19 type Target = [u8];
20
21 fn deref(&self) -> &[u8] {
22 match self {
23 FileData::Mmap(m) => m,
24 FileData::Owned(v) => v,
25 }
26 }
27}
28
29/// Threshold below which we use read() instead of mmap.
30/// For files under 1MB, read() is faster since mmap has setup/teardown overhead
31/// (page table creation for up to 256 pages, TLB flush on munmap) that exceeds
32/// the zero-copy benefit.
33const MMAP_THRESHOLD: u64 = 1024 * 1024;
34
35/// Track whether O_NOATIME is supported to avoid repeated failed open() attempts.
36/// After the first EPERM, we never try O_NOATIME again (saves one syscall per file).
37#[cfg(target_os = "linux")]
38static NOATIME_SUPPORTED: AtomicBool = AtomicBool::new(true);
39
40/// Open a file with O_NOATIME on Linux to avoid atime inode writes.
41/// Caches whether O_NOATIME works to avoid double-open on every file.
42#[cfg(target_os = "linux")]
43fn open_noatime(path: &Path) -> io::Result<File> {
44 use std::os::unix::fs::OpenOptionsExt;
45 if NOATIME_SUPPORTED.load(Ordering::Relaxed) {
46 match fs::OpenOptions::new()
47 .read(true)
48 .custom_flags(libc::O_NOATIME)
49 .open(path)
50 {
51 Ok(f) => return Ok(f),
52 Err(ref e) if e.raw_os_error() == Some(libc::EPERM) => {
53 // O_NOATIME requires file ownership or CAP_FOWNER — disable globally
54 NOATIME_SUPPORTED.store(false, Ordering::Relaxed);
55 }
56 Err(e) => return Err(e), // Real error, propagate
57 }
58 }
59 File::open(path)
60}
61
62#[cfg(not(target_os = "linux"))]
63fn open_noatime(path: &Path) -> io::Result<File> {
64 File::open(path)
65}
66
67/// Read a file with zero-copy mmap for large files or read() for small files.
68/// Opens once with O_NOATIME, uses fstat for metadata to save a syscall.
69pub fn read_file(path: &Path) -> io::Result<FileData> {
70 let file = open_noatime(path)?;
71 let metadata = file.metadata()?;
72 let len = metadata.len();
73
74 if len > 0 && metadata.file_type().is_file() {
75 // Small files: exact-size read from already-open fd.
76 // Uses read_full into pre-sized buffer instead of read_to_end,
77 // which avoids the grow-and-probe pattern (saves 1-2 extra read() syscalls).
78 if len < MMAP_THRESHOLD {
79 let mut buf = vec![0u8; len as usize];
80 let n = read_full(&mut &file, &mut buf)?;
81 buf.truncate(n);
82 return Ok(FileData::Owned(buf));
83 }
84
85 // SAFETY: Read-only mapping. MADV_SEQUENTIAL lets the kernel
86 // prefetch ahead of our sequential access pattern.
87 match unsafe { MmapOptions::new().populate().map(&file) } {
88 Ok(mmap) => {
89 #[cfg(target_os = "linux")]
90 {
91 let _ = mmap.advise(memmap2::Advice::Sequential);
92 let _ = mmap.advise(memmap2::Advice::WillNeed);
93 // HUGEPAGE reduces TLB misses for large files (2MB+ = 1+ huge page).
94 // With 4KB pages, a 100MB file needs 25,600 TLB entries; with 2MB
95 // huge pages it needs only 50, reducing TLB miss overhead by ~500x.
96 if len >= 2 * 1024 * 1024 {
97 let _ = mmap.advise(memmap2::Advice::HugePage);
98 }
99 }
100 Ok(FileData::Mmap(mmap))
101 }
102 Err(_) => {
103 // mmap failed — fall back to read
104 let mut buf = Vec::with_capacity(len as usize);
105 let mut reader = file;
106 reader.read_to_end(&mut buf)?;
107 Ok(FileData::Owned(buf))
108 }
109 }
110 } else if len > 0 {
111 // Non-regular file (special files) — read from open fd
112 let mut buf = Vec::new();
113 let mut reader = file;
114 reader.read_to_end(&mut buf)?;
115 Ok(FileData::Owned(buf))
116 } else {
117 Ok(FileData::Owned(Vec::new()))
118 }
119}
120
121/// Read a file entirely into a mutable Vec.
122/// Uses exact-size allocation from fstat + single read() for efficiency.
123/// Preferred over mmap when the caller needs mutable access (e.g., in-place decode).
124pub fn read_file_vec(path: &Path) -> io::Result<Vec<u8>> {
125 let file = open_noatime(path)?;
126 let metadata = file.metadata()?;
127 let len = metadata.len() as usize;
128 if len == 0 {
129 return Ok(Vec::new());
130 }
131 let mut buf = vec![0u8; len];
132 let n = read_full(&mut &file, &mut buf)?;
133 buf.truncate(n);
134 Ok(buf)
135}
136
137/// Read a file always using mmap, with MADV_WILLNEED (no MADV_SEQUENTIAL).
138/// Used by tac which scans forward then outputs in reverse, and benefits
139/// from zero-copy vmsplice output from mmap pages.
140/// Skips the MMAP_THRESHOLD — even small files benefit from mmap since:
141/// - No memcpy from page cache to userspace (zero-copy)
142/// - vmsplice can reference mmap pages directly in the pipe
143/// - mmap setup cost for small files (~25 pages) is comparable to read()
144pub fn read_file_mmap(path: &Path) -> io::Result<FileData> {
145 let file = open_noatime(path)?;
146 let metadata = file.metadata()?;
147 let len = metadata.len();
148
149 if len > 0 && metadata.file_type().is_file() {
150 match unsafe { MmapOptions::new().populate().map(&file) } {
151 Ok(mmap) => {
152 #[cfg(target_os = "linux")]
153 {
154 let _ = mmap.advise(memmap2::Advice::WillNeed);
155 if len >= 2 * 1024 * 1024 {
156 let _ = mmap.advise(memmap2::Advice::HugePage);
157 }
158 }
159 return Ok(FileData::Mmap(mmap));
160 }
161 Err(_) => {
162 // mmap failed — fall back to read
163 let mut buf = vec![0u8; len as usize];
164 let n = read_full(&mut &file, &mut buf)?;
165 buf.truncate(n);
166 return Ok(FileData::Owned(buf));
167 }
168 }
169 } else if len > 0 {
170 // Non-regular file (special files) — read from open fd
171 let mut buf = Vec::new();
172 let mut reader = file;
173 reader.read_to_end(&mut buf)?;
174 Ok(FileData::Owned(buf))
175 } else {
176 Ok(FileData::Owned(Vec::new()))
177 }
178}
179
180/// Get file size without reading it (for byte-count-only optimization).
181pub fn file_size(path: &Path) -> io::Result<u64> {
182 Ok(fs::metadata(path)?.len())
183}
184
185/// Read all bytes from stdin into a Vec.
186/// On Linux, uses raw libc::read() to bypass Rust's StdinLock/BufReader overhead.
187/// Uses a direct read() loop into a pre-allocated buffer instead of read_to_end(),
188/// which avoids Vec's grow-and-probe pattern (extra read() calls and memcpy).
189/// Callers should enlarge the pipe buffer via fcntl(F_SETPIPE_SZ) before calling.
190/// Uses the full spare capacity for each read() to minimize syscalls.
191pub fn read_stdin() -> io::Result<Vec<u8>> {
192 #[cfg(target_os = "linux")]
193 return read_stdin_raw();
194
195 #[cfg(not(target_os = "linux"))]
196 read_stdin_generic()
197}
198
199/// Raw libc::read() implementation for Linux — bypasses Rust's StdinLock
200/// and BufReader layers entirely. StdinLock uses an internal 8KB BufReader
201/// which adds an extra memcpy for every read; raw read() goes directly
202/// from the kernel pipe buffer to our Vec.
203///
204/// Pre-allocates 16MB to cover most workloads (benchmark = 10MB) without
205/// over-allocating. For inputs > 16MB, doubles capacity on demand.
206/// Each read() uses the full spare capacity to maximize bytes per syscall.
207///
208/// Note: callers (ftac, ftr, fbase64) are expected to enlarge the pipe
209/// buffer via fcntl(F_SETPIPE_SZ) before calling this function. We don't
210/// do it here to avoid accidentally shrinking a previously enlarged pipe.
211#[cfg(target_os = "linux")]
212fn read_stdin_raw() -> io::Result<Vec<u8>> {
213 const PREALLOC: usize = 16 * 1024 * 1024;
214
215 let mut buf: Vec<u8> = Vec::with_capacity(PREALLOC);
216
217 loop {
218 let spare_cap = buf.capacity() - buf.len();
219 if spare_cap < 1024 * 1024 {
220 // Grow by doubling (or at least 64MB) to minimize realloc count
221 let new_cap = (buf.capacity() * 2).max(buf.len() + PREALLOC);
222 buf.reserve(new_cap - buf.capacity());
223 }
224 let spare_cap = buf.capacity() - buf.len();
225 let start = buf.len();
226
227 // SAFETY: we read into the uninitialized spare capacity and extend
228 // set_len only by the number of bytes actually read.
229 let ret = unsafe {
230 libc::read(
231 0,
232 buf.as_mut_ptr().add(start) as *mut libc::c_void,
233 spare_cap,
234 )
235 };
236 if ret < 0 {
237 let err = io::Error::last_os_error();
238 if err.kind() == io::ErrorKind::Interrupted {
239 continue;
240 }
241 return Err(err);
242 }
243 if ret == 0 {
244 break;
245 }
246 unsafe { buf.set_len(start + ret as usize) };
247 }
248
249 Ok(buf)
250}
251
252/// Generic read_stdin for non-Linux platforms.
253#[cfg(not(target_os = "linux"))]
254fn read_stdin_generic() -> io::Result<Vec<u8>> {
255 const PREALLOC: usize = 16 * 1024 * 1024;
256 const READ_BUF: usize = 4 * 1024 * 1024;
257
258 let mut stdin = io::stdin().lock();
259 let mut buf: Vec<u8> = Vec::with_capacity(PREALLOC);
260
261 loop {
262 let spare_cap = buf.capacity() - buf.len();
263 if spare_cap < READ_BUF {
264 buf.reserve(PREALLOC);
265 }
266 let spare_cap = buf.capacity() - buf.len();
267
268 let start = buf.len();
269 unsafe { buf.set_len(start + spare_cap) };
270 match stdin.read(&mut buf[start..start + spare_cap]) {
271 Ok(0) => {
272 buf.truncate(start);
273 break;
274 }
275 Ok(n) => {
276 buf.truncate(start + n);
277 }
278 Err(e) if e.kind() == io::ErrorKind::Interrupted => {
279 buf.truncate(start);
280 continue;
281 }
282 Err(e) => return Err(e),
283 }
284 }
285
286 Ok(buf)
287}
288
289/// Read as many bytes as possible into buf, retrying on partial reads.
290/// Ensures the full buffer is filled (or EOF reached), avoiding the
291/// probe-read overhead of read_to_end.
292/// Fast path: regular file reads usually return the full buffer on the first call.
293#[inline]
294fn read_full(reader: &mut impl Read, buf: &mut [u8]) -> io::Result<usize> {
295 // Fast path: first read() usually fills the entire buffer for regular files
296 let n = reader.read(buf)?;
297 if n == buf.len() || n == 0 {
298 return Ok(n);
299 }
300 // Slow path: partial read — retry to fill buffer (pipes, slow devices)
301 let mut total = n;
302 while total < buf.len() {
303 match reader.read(&mut buf[total..]) {
304 Ok(0) => break,
305 Ok(n) => total += n,
306 Err(e) if e.kind() == io::ErrorKind::Interrupted => continue,
307 Err(e) => return Err(e),
308 }
309 }
310 Ok(total)
311}