1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
//! Module for simulating thermal behavior of powertrains

use proc_macros::{add_pyo3_api, HistoryVec};

use crate::air::AirProperties;
use crate::cycle;
use crate::imports::*;
#[cfg(feature = "pyo3")]
use crate::pyo3imports::*;
use crate::simdrive;
use crate::vehicle;
use crate::vehicle_thermal::*;

#[add_pyo3_api(
    /// method for instantiating SimDriveHot
    #[new]
    pub fn __new__(
        cyc: cycle::RustCycle,
        veh: vehicle::RustVehicle,
        vehthrm: VehicleThermal,
        init_state: Option<ThermalState>,
        amb_te_deg_c: Option<Vec<f64>>,
     ) -> Self {
        Self::new(cyc, veh, vehthrm, init_state, amb_te_deg_c.map(Array1::from))
    }

    #[pyo3(name = "gap_to_lead_vehicle_m")]
    /// Provides the gap-with lead vehicle from start to finish
    pub fn gap_to_lead_vehicle_m_py(&self) -> PyResult<Vec<f64>> {
        Ok(self.gap_to_lead_vehicle_m().to_vec())
    }
     #[pyo3(name = "sim_drive")]
    /// Initialize and run sim_drive_walk as appropriate for vehicle attribute vehPtType.
    /// Arguments
    /// ------------
    /// init_soc: initial SOC for electrified vehicles.
    /// aux_in_kw: aux_in_kw override.  Array of same length as cyc.time_s.
    ///     Default of None causes veh.aux_kw to be used.
    pub fn sim_drive_py(
        &mut self,
        init_soc: Option<f64>,
        aux_in_kw_override: Option<Vec<f64>>,
    ) -> PyResult<()> {
        let aux_in_kw_override = aux_in_kw_override.map(Array1::from);
        Ok(self.sim_drive(init_soc, aux_in_kw_override)?)
    }

    /// Receives second-by-second cycle information, vehicle properties,
    /// and an initial state of charge and runs sim_drive_step to perform a
    /// backward facing powertrain simulation. Method 'sim_drive' runs this
    /// iteratively to achieve correct SOC initial and final conditions, as
    /// needed.
    ///
    /// Arguments
    /// ------------
    /// init_soc (optional): initial battery state-of-charge (SOC) for electrified vehicles
    /// aux_in_kw: aux_in_kw override.  Array of same length as cyc.time_s.
    ///         None causes veh.aux_kw to be used.
    pub fn sim_drive_walk(
        &mut self,
        init_soc: f64,
        aux_in_kw_override: Option<Vec<f64>>,
    ) -> PyResult<()> {
        let aux_in_kw_override = aux_in_kw_override.map(Array1::from);
        self.walk(init_soc, aux_in_kw_override);
        Ok(())
    }

    #[pyo3(name = "init_for_step")]
    /// This is a specialty method which should be called prior to using
    /// sim_drive_step in a loop.
    /// Arguments
    /// ------------
    /// init_soc: initial battery state-of-charge (SOC) for electrified vehicles
    /// aux_in_kw: aux_in_kw override.  Array of same length as cyc.time_s.
    ///         Default of None causes veh.aux_kw to be used.
    pub fn init_for_step_py(
        &mut self,
        init_soc:f64,
        aux_in_kw_override: Option<Vec<f64>>
    ) -> PyResult<()> {
        let aux_in_kw_override = aux_in_kw_override.map(Array1::from);
        self.init_for_step(init_soc, aux_in_kw_override);
        Ok(())
    }

    /// Step through 1 time step.
    pub fn sim_drive_step(&mut self) -> PyResult<()> {
        Ok(self.step()?)
    }
    #[pyo3(name = "solve_step")]
    /// Perform all the calculations to solve 1 time step.
    pub fn solve_step_py(&mut self, i: usize) -> PyResult<()> {
        self.solve_step(i);
        Ok(())
    }

    #[pyo3(name = "set_misc_calcs")]
    /// Sets misc. calculations at time step 'i'
    /// Arguments:
    /// ----------
    /// i: index of time step
    pub fn set_misc_calcs_py(&mut self, i: usize) -> PyResult<()> {
        self.set_misc_calcs(i);
        Ok(())
    }

    #[pyo3(name = "set_comp_lims")]
    // Calculate actual speed achieved if vehicle hardware cannot achieve trace speed.
    // Arguments
    // ------------
    // i: index of time step
    pub fn set_comp_lims_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_comp_lims(i)?)
    }

    #[pyo3(name = "set_power_calcs")]
    /// Calculate power requirements to meet cycle and determine if
    /// cycle can be met.
    /// Arguments
    /// ------------
    /// i: index of time step
    pub fn set_power_calcs_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_power_calcs(i)?)
    }

    #[pyo3(name = "set_ach_speed")]
    // Calculate actual speed achieved if vehicle hardware cannot achieve trace speed.
    // Arguments
    // ------------
    // i: index of time step
    pub fn set_ach_speed_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_ach_speed(i)?)
    }

    #[pyo3(name = "set_hybrid_cont_calcs")]
    /// Hybrid control calculations.
    /// Arguments
    /// ------------
    /// i: index of time step
    pub fn set_hybrid_cont_calcs_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_hybrid_cont_calcs(i)?)
    }

    #[pyo3(name = "set_fc_forced_state")]
    /// Calculate control variables related to engine on/off state
    /// Arguments
    /// ------------
    /// i: index of time step
    /// `_py` extension is needed to avoid name collision with getter/setter methods
    pub fn set_fc_forced_state_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_fc_forced_state_rust(i)?)
    }

    #[pyo3(name = "set_hybrid_cont_decisions")]
    /// Hybrid control decisions.
    /// Arguments
    /// ------------
    /// i: index of time step
    pub fn set_hybrid_cont_decisions_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_hybrid_cont_decisions(i)?)
    }

    #[pyo3(name = "set_fc_power")]
    /// Sets power consumption values for the current time step.
    /// Arguments
    /// ------------
    /// i: index of time step
    pub fn set_fc_power_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_fc_power(i)?)
    }

    #[pyo3(name = "set_time_dilation")]
    /// Sets the time dilation for the current step.
    /// Arguments
    /// ------------
    /// i: index of time step
    pub fn set_time_dilation_py(&mut self, i: usize) -> PyResult<()> {
        Ok(self.set_time_dilation(i)?)
    }

    #[pyo3(name = "set_post_scalars")]
    /// Sets scalar variables that can be calculated after a cycle is run.
    /// This includes mpgge, various energy metrics, and others
    pub fn set_post_scalars_py(&mut self) -> PyResult<()> {
        Ok(self.set_post_scalars()?)
    }
)]
#[derive(Serialize, Deserialize, Clone, PartialEq, Debug)]
pub struct SimDriveHot {
    #[api(has_orphaned)]
    pub sd: simdrive::RustSimDrive,
    #[api(has_orphaned)]
    pub vehthrm: VehicleThermal,
    #[api(skip_get, skip_set)]
    #[serde(skip)]
    air: AirProperties,
    #[api(has_orphaned)]
    pub state: ThermalState,
    pub history: ThermalStateHistoryVec,
    pub hvac_model_history: HVACModelHistoryVec,
    #[api(skip_get, skip_set)]
    amb_te_deg_c: Option<Array1<f64>>,
}

impl SerdeAPI for SimDriveHot {}

impl SimDriveHot {
    pub fn new(
        cyc: cycle::RustCycle,
        veh: vehicle::RustVehicle,
        vehthrm: VehicleThermal,
        init_state: Option<ThermalState>,
        amb_te_deg_c: Option<Array1<f64>>,
    ) -> Self {
        let sd = simdrive::RustSimDrive::new(cyc, veh);
        let air = AirProperties::default();
        let history = ThermalStateHistoryVec::default();

        let (amb_te_deg_c_arr, state) = match amb_te_deg_c {
            Some(amb_te_deg_c_arr) => match init_state {
                Some(state) => {
                    assert_eq!(state.amb_te_deg_c, amb_te_deg_c_arr[0]);
                    (Some(amb_te_deg_c_arr), state)
                }
                None => {
                    let state = ThermalState {
                        amb_te_deg_c: amb_te_deg_c_arr[0],
                        ..ThermalState::default()
                    };
                    (Some(amb_te_deg_c_arr), state)
                }
            },
            None => (
                None, // 1st return element
                match init_state {
                    Some(state) => state, // 2nd return element
                    None => ThermalState::default(),
                },
            ),
        };

        Self {
            sd,
            vehthrm,
            air,
            state,
            history,
            hvac_model_history: HVACModelHistoryVec::default(),
            amb_te_deg_c: amb_te_deg_c_arr,
        }
    }

    pub fn gap_to_lead_vehicle_m(&self) -> Array1<f64> {
        self.sd.gap_to_lead_vehicle_m()
    }

    pub fn sim_drive(
        &mut self,
        init_soc: Option<f64>,
        aux_in_kw_override: Option<Array1<f64>>,
    ) -> Result<(), anyhow::Error> {
        self.sd.hev_sim_count = 0;

        let init_soc = match init_soc {
            Some(x) => x,
            None => {
                if self.sd.veh.veh_pt_type == vehicle::CONV {
                    // If no EV / Hybrid components, no SOC considerations.
                    (self.sd.veh.max_soc + self.sd.veh.min_soc) / 2.0
                } else if self.sd.veh.veh_pt_type == vehicle::HEV {
                    // ####################################
                    // ### Charge Balancing Vehicle SOC ###
                    // ####################################
                    // Charge balancing SOC for HEV vehicle types. Iterating init_soc and comparing to final SOC.
                    // Iterating until tolerance met or 30 attempts made.
                    let mut init_soc = (self.sd.veh.max_soc + self.sd.veh.min_soc) / 2.0;
                    let mut ess_2fuel_kwh = 1.0;
                    while ess_2fuel_kwh > self.sd.veh.ess_to_fuel_ok_error
                        && self.sd.hev_sim_count < self.sd.sim_params.sim_count_max
                    {
                        self.sd.hev_sim_count += 1;
                        self.walk(init_soc, aux_in_kw_override.clone());
                        let fuel_kj = (&self.sd.fs_kw_out_ach * self.sd.cyc.dt_s()).sum();
                        let roadway_chg_kj =
                            (&self.sd.roadway_chg_kw_out_ach * self.sd.cyc.dt_s()).sum();
                        if (fuel_kj + roadway_chg_kj) > 0.0 {
                            ess_2fuel_kwh = ((self.sd.soc[0] - self.sd.soc.last().unwrap())
                                * self.sd.veh.ess_max_kwh
                                * 3.6e3
                                / (fuel_kj + roadway_chg_kj))
                                .abs();
                        } else {
                            ess_2fuel_kwh = 0.0;
                        }
                        init_soc = min(1.0, max(0.0, *self.sd.soc.last().unwrap()));
                    }
                    init_soc
                } else if self.sd.veh.veh_pt_type == vehicle::PHEV
                    || self.sd.veh.veh_pt_type == vehicle::BEV
                {
                    // If EV, initializing initial SOC to maximum SOC.
                    self.sd.veh.max_soc
                } else {
                    bail!("Failed to properly initialize SOC.");
                }
            }
        };

        self.walk(init_soc, aux_in_kw_override);

        self.set_post_scalars()?;
        Ok(())
    }

    pub fn walk(&mut self, init_soc: f64, aux_in_kw_override: Option<Array1<f64>>) {
        self.init_for_step(init_soc, aux_in_kw_override);
        while self.sd.i < self.sd.cyc.time_s.len() {
            self.step().unwrap();
        }
    }

    pub fn init_for_step(&mut self, init_soc: f64, aux_in_kw_override: Option<Array1<f64>>) {
        self.history.push(self.state.clone()); // TODO: eventually make this dependent on `save_interval` usize per ALTRIOS
        match &self.vehthrm.cabin_hvac_model {
            CabinHvacModelTypes::Internal(hvac_mod) => {
                self.hvac_model_history.push(hvac_mod.clone())
            }
            CabinHvacModelTypes::External => {}
        }
        self.sd.init_for_step(init_soc, aux_in_kw_override).unwrap();
    }

    pub fn set_speed_for_target_gap_using_idm(&mut self, i: usize) {
        self.sd.set_speed_for_target_gap_using_idm(i);
    }

    pub fn set_speed_for_target_gap(&mut self, i: usize) {
        self.sd.set_speed_for_target_gap(i);
    }

    pub fn step(&mut self) -> Result<(), anyhow::Error> {
        self.set_thermal_calcs(self.sd.i);
        self.set_misc_calcs(self.sd.i);
        self.set_comp_lims(self.sd.i)?;
        self.set_power_calcs(self.sd.i)?;
        self.set_ach_speed(self.sd.i)?;
        self.set_hybrid_cont_calcs(self.sd.i)?;
        self.set_fc_forced_state_rust(self.sd.i)?;
        self.set_hybrid_cont_decisions(self.sd.i)?;
        self.set_fc_power(self.sd.i)?;

        self.sd.i += 1; // increment time step counter
        self.history.push(self.state.clone());
        match &self.vehthrm.cabin_hvac_model {
            CabinHvacModelTypes::Internal(hvac_mod) => {
                self.hvac_model_history.push(hvac_mod.clone());
            }
            CabinHvacModelTypes::External => {}
        }
        Ok(())
    }

    pub fn solve_step(&mut self, i: usize) {
        self.sd.solve_step(i).unwrap();
    }

    pub fn set_thermal_calcs(&mut self, i: usize) {
        // most of the thermal equations are at [i-1] because the various thermally
        // sensitive component efficiencies dependent on the [i] temperatures, but
        // these are in turn dependent on [i-1] heat transfer processes
        // verify that valid option is specified

        if let Some(amb_te_deg_c) = &self.amb_te_deg_c {
            self.state.amb_te_deg_c = amb_te_deg_c[i];
        }

        if let FcModelTypes::Internal(..) = &self.vehthrm.fc_model {
            self.set_fc_thermal_calcs(i);
        }

        if let CabinHvacModelTypes::Internal(_) = &self.vehthrm.cabin_hvac_model {
            self.set_cab_thermal_calcs(i);
        }

        if self.vehthrm.exhport_model == ComponentModelTypes::Internal {
            self.set_exhport_thermal_calcs(i)
        }

        if self.vehthrm.cat_model == ComponentModelTypes::Internal {
            self.set_cat_thermal_calcs(i)
        }

        if self.vehthrm.fc_model != FcModelTypes::External {
            // Energy balance for fuel converter
            self.state.fc_te_deg_c += (self.state.fc_qdot_kw
                - self.state.fc_qdot_to_amb_kw
                - self.state.fc_qdot_to_htr_kw)
                / self.vehthrm.fc_c_kj__k
                * self.sd.cyc.dt_s_at_i(i)
        }
    }

    /// Solve fuel converter thermal behavior assuming convection parameters of sphere.
    pub fn set_fc_thermal_calcs(&mut self, i: usize) {
        // Constitutive equations for fuel converter
        // calculation of adiabatic flame temperature
        self.state.fc_te_adiabatic_deg_c = self.air.get_te_from_h(
            ((1.0 + self.state.fc_lambda * self.sd.props.fuel_afr_stoich)
                * self.air.get_h(self.state.amb_te_deg_c)
                + self.sd.props.get_fuel_lhv_kj_per_kg() * 1e3 * self.state.fc_lambda.min(1.0))
                / (1.0 + self.state.fc_lambda * self.sd.props.fuel_afr_stoich),
        );

        // limited between 0 and 1, but should really not get near 1
        self.state.fc_qdot_per_net_heat = (self.vehthrm.fc_coeff_from_comb
            * (self.state.fc_te_adiabatic_deg_c - self.state.fc_te_deg_c))
            .min(1.0)
            .max(0.0);

        // heat generation
        self.state.fc_qdot_kw = self.state.fc_qdot_per_net_heat
            * (self.sd.fc_kw_in_ach[i - 1] - self.sd.fc_kw_out_ach[i - 1]);

        // film temperature for external convection calculations
        let fc_air_film_te_deg_c = 0.5 * (self.state.fc_te_deg_c + self.state.amb_te_deg_c);

        // density * speed * diameter / dynamic viscosity
        let fc_air_film_re = self.air.get_rho(fc_air_film_te_deg_c, None)
            * self.sd.mps_ach[i - 1]
            * self.vehthrm.fc_l
            / self.air.get_mu(fc_air_film_te_deg_c);

        // calculate heat transfer coeff. from engine to ambient [W / (m ** 2 * K)]
        if self.sd.mps_ach[i - 1] < 1.0 {
            // if stopped, scale based on thermostat opening and constant convection
            self.state.fc_htc_to_amb = interpolate(
                &self.state.fc_te_deg_c,
                &Array1::from_vec(vec![
                    self.vehthrm.tstat_te_sto_deg_c,
                    self.vehthrm.tstat_te_fo_deg_c(),
                ]),
                &Array1::from_vec(vec![
                    self.vehthrm.fc_htc_to_amb_stop,
                    self.vehthrm.fc_htc_to_amb_stop * self.vehthrm.rad_eps,
                ]),
                false,
            )
        } else {
            // Calculate heat transfer coefficient for sphere,
            // from Incropera's Intro to Heat Transfer, 5th Ed., eq. 7.44
            let fc_sphere_conv_params = get_sphere_conv_params(fc_air_film_re);
            let fc_htc_to_amb_sphere = (fc_sphere_conv_params.0
                * fc_air_film_re.powf(fc_sphere_conv_params.1))
                * self.air.get_pr(fc_air_film_te_deg_c).powf(1.0 / 3.0)
                * self.air.get_k(fc_air_film_te_deg_c)
                / self.vehthrm.fc_l;
            self.state.fc_htc_to_amb = interpolate(
                &self.state.fc_te_deg_c,
                &Array1::from_vec(vec![
                    self.vehthrm.tstat_te_sto_deg_c,
                    self.vehthrm.tstat_te_fo_deg_c(),
                ]),
                &Array1::from_vec(vec![
                    fc_htc_to_amb_sphere,
                    fc_htc_to_amb_sphere * self.vehthrm.rad_eps,
                ]),
                false,
            )
        }

        self.state.fc_qdot_to_amb_kw = self.state.fc_htc_to_amb
            * 1e-3
            * self.vehthrm.fc_area_ext()
            * (self.state.fc_te_deg_c - self.state.amb_te_deg_c)
    }

    /// Solve cabin thermal behavior.
    pub fn set_cab_thermal_calcs(&mut self, i: usize) {
        if let CabinHvacModelTypes::Internal(hvac_model) = &mut self.vehthrm.cabin_hvac_model {
            // flat plate model for isothermal, mixed-flow from Incropera and deWitt, Fundamentals of Heat and Mass
            // Transfer, 7th Edition
            let cab_te_film_ext_deg_c: f64 =
                0.5 * (self.state.cab_te_deg_c + self.state.amb_te_deg_c);
            let re_l: f64 = self.air.get_rho(cab_te_film_ext_deg_c, None)
                * self.sd.mps_ach[i - 1]
                * self.vehthrm.cab_l_length
                / self.air.get_mu(cab_te_film_ext_deg_c);
            let re_l_crit: f64 = 5.0e5; // critical Re for transition to turbulence

            let nu_l_bar = if re_l < re_l_crit {
                // equation 7.30
                0.664 * re_l.powf(0.5) * self.air.get_pr(cab_te_film_ext_deg_c).powf(1.0 / 3.0)
            } else {
                // equation 7.38
                let a = 871.0; // equation 7.39
                (0.037 * re_l.powf(0.8) - a) * self.air.get_pr(cab_te_film_ext_deg_c)
            };

            if self.sd.mph_ach[i - 1] > 2.0 {
                self.state.cab_qdot_to_amb_kw = 1e-3
                    * (self.vehthrm.cab_l_length * self.vehthrm.cab_l_width)
                    / (1.0
                        / (nu_l_bar * self.air.get_k(cab_te_film_ext_deg_c)
                            / self.vehthrm.cab_l_length)
                        + self.vehthrm.cab_r_to_amb)
                    * (self.state.cab_te_deg_c - self.state.amb_te_deg_c);
            } else {
                self.state.cab_qdot_to_amb_kw = 1e-3
                    * (self.vehthrm.cab_l_length * self.vehthrm.cab_l_width)
                    / (1.0 / self.vehthrm.cab_htc_to_amb_stop + self.vehthrm.cab_r_to_amb)
                    * (self.state.cab_te_deg_c - self.state.amb_te_deg_c);
            }

            let te_delta_vs_set_deg_c = self.state.cab_te_deg_c - hvac_model.te_set_deg_c;
            let te_delta_vs_amb_deg_c = self.state.cab_te_deg_c - self.state.amb_te_deg_c;

            if self.state.cab_te_deg_c <= hvac_model.te_set_deg_c + hvac_model.te_deadband_deg_c
                && self.state.cab_te_deg_c >= hvac_model.te_set_deg_c - hvac_model.te_deadband_deg_c
            {
                // inside deadband; no hvac power is needed

                self.state.cab_qdot_from_hvac_kw = 0.0;
                hvac_model.i_cntrl_kw = 0.0; // reset to 0.0
            } else {
                hvac_model.p_cntrl_kw = hvac_model.p_cntrl_kw_per_deg_c * te_delta_vs_set_deg_c;
                // integral control effort increases in magnitude by
                // 1 time step worth of error
                hvac_model.i_cntrl_kw += hvac_model.i_cntrl_kw_per_deg_c_scnds
                    * te_delta_vs_set_deg_c
                    * self.sd.cyc.dt_s_at_i(i);

                hvac_model.d_cntrl_kw = hvac_model.d_cntrl_kj_per_deg_c
                    * ((self.state.cab_te_deg_c - self.state.cab_prev_te_deg_c)
                        / self.sd.cyc.dt_s_at_i(i));

                // https://en.wikipedia.org/wiki/Coefficient_of_performance#Theoretical_performance_limits
                // cop_ideal is t_h / (t_h - t_c) for heating
                // cop_ideal is t_c / (t_h - t_c) for cooling

                // divide-by-zero protection and realistic limit on COP
                let cop_ideal = if te_delta_vs_amb_deg_c.abs() < 5.0 {
                    // cabin is cooler than ambient + threshold
                    (self.state.cab_te_deg_c + 273.15) / 5.0
                } else {
                    (self.state.cab_te_deg_c + 273.15) / te_delta_vs_amb_deg_c.abs()
                };
                hvac_model.cop = cop_ideal * hvac_model.frac_of_ideal_cop;
                assert!(hvac_model.cop > 0.0);

                if self.state.cab_te_deg_c > hvac_model.te_set_deg_c + hvac_model.te_deadband_deg_c
                {
                    // COOLING MODE; cabin is hotter than set point

                    if hvac_model.i_cntrl_kw < 0.0 {
                        // reset to switch from heating to cooling
                        hvac_model.i_cntrl_kw = 0.0;
                    }
                    hvac_model.i_cntrl_kw = hvac_model.i_cntrl_kw.min(hvac_model.cntrl_max_kw);
                    self.state.cab_qdot_from_hvac_kw =
                        (-hvac_model.p_cntrl_kw - hvac_model.i_cntrl_kw - hvac_model.d_cntrl_kw)
                            .max(-hvac_model.cntrl_max_kw);

                    self.state.cab_hvac_pwr_aux_kw = (-self.state.cab_qdot_from_hvac_kw
                        / hvac_model.cop)
                        .min(hvac_model.pwr_max_aux_load_for_cooling_kw)
                        .max(0.0);
                    // correct if limit is exceeded
                    self.state.cab_qdot_from_hvac_kw =
                        -self.state.cab_hvac_pwr_aux_kw * hvac_model.cop;
                } else {
                    // HEATING MODE; cabin is colder than set point

                    if hvac_model.i_cntrl_kw > 0.0 {
                        // reset to switch from cooling to heating
                        hvac_model.i_cntrl_kw = 0.0;
                    }
                    hvac_model.i_cntrl_kw = hvac_model.i_cntrl_kw.max(-hvac_model.cntrl_max_kw);

                    self.state.cab_qdot_from_hvac_kw =
                        (-hvac_model.p_cntrl_kw - hvac_model.i_cntrl_kw - hvac_model.d_cntrl_kw)
                            .min(hvac_model.cntrl_max_kw);

                    if hvac_model.use_fc_waste_heat {
                        // limit heat transfer to be substantially less than what is physically possible
                        // i.e. the engine can't drop below cabin temperature to heat the cabin
                        self.state.cab_qdot_from_hvac_kw = self
                            .state
                            .cab_qdot_from_hvac_kw
                            .min(
                                (self.state.fc_te_deg_c - self.state.cab_te_deg_c)
                                * 0.1 // so that it's substantially less
                                * self.vehthrm.cab_c_kj__k
                                    / self.sd.cyc.dt_s_at_i(i),
                            )
                            .max(0.0);
                        self.state.fc_qdot_to_htr_kw = self.state.cab_qdot_from_hvac_kw;
                        // TODO: think about what to do for PHEV, which needs careful consideration here
                        // HEV probably also needs careful consideration
                        // There needs to be an engine temperature (e.g. 60°C) below which the engine is forced on
                        assert!(self.sd.veh.veh_pt_type != "BEV");
                        // assume blower has negligible impact on aux load, may want to revise later
                    } else {
                        self.state.cab_hvac_pwr_aux_kw = (self.state.cab_qdot_from_hvac_kw
                            / hvac_model.cop)
                            .min(hvac_model.pwr_max_aux_load_for_cooling_kw)
                            .max(0.0);
                        self.state.cab_qdot_from_hvac_kw =
                            self.state.cab_hvac_pwr_aux_kw * hvac_model.cop;
                    }
                }
            }

            self.state.cab_prev_te_deg_c = self.state.cab_te_deg_c;
            self.state.cab_te_deg_c += (self.state.cab_qdot_from_hvac_kw
                - self.state.cab_qdot_to_amb_kw)
                / self.vehthrm.cab_c_kj__k
                * self.sd.cyc.dt_s_at_i(i);
        }
    }

    /// Solve exhport thermal behavior.
    pub fn set_exhport_thermal_calcs(&mut self, i: usize) {
        // lambda index may need adjustment, depending on how this ends up being modeled.
        self.state.exh_mdot = self.sd.fs_kw_out_ach[i - 1] / self.sd.props.get_fuel_lhv_kj_per_kg()
            * (1.0 + self.sd.props.fuel_afr_stoich * self.state.fc_lambda);
        self.state.exh_hdot_kw = (1.0 - self.state.fc_qdot_per_net_heat)
            * (self.sd.fc_kw_in_ach[i - 1] - self.sd.fc_kw_out_ach[i - 1]);

        if self.state.exh_mdot > 5e-4 {
            self.state.exhport_exh_te_in_deg_c = min(
                self.air
                    .get_te_from_h(self.state.exh_hdot_kw * 1e3 / self.state.exh_mdot),
                self.state.fc_te_adiabatic_deg_c,
            );
            // when flow is small, assume inlet temperature is temporally constant
            // so previous value is not overwritten
        }

        // calculate heat transfer coeff. from exhaust port to ambient [W / (m ** 2 * K)]
        if (self.state.exhport_te_deg_c - self.state.fc_te_deg_c) > 0.0 {
            // if exhaust port is hotter than ambient, make sure heat transfer cannot violate the second law
            self.state.exhport_qdot_to_amb = min(
                // nominal heat transfer to amb
                self.vehthrm.exhport_ha_to_amb
                    * (self.state.exhport_te_deg_c - self.state.fc_te_deg_c),
                // max possible heat transfer to amb
                self.vehthrm.exhport_c_kj__k
                    * 1e3
                    * (self.state.exhport_te_deg_c - self.state.fc_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        } else {
            // exhaust port cooler than the ambient
            self.state.exhport_qdot_to_amb = max(
                // nominal heat transfer to amb
                self.vehthrm.exhport_ha_to_amb
                    * (self.state.exhport_te_deg_c - self.state.fc_te_deg_c),
                // max possible heat transfer to amb
                self.vehthrm.exhport_c_kj__k
                    * 1e3
                    * (self.state.exhport_te_deg_c - self.state.fc_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        }

        if (self.state.exhport_exh_te_in_deg_c - self.state.exhport_te_deg_c) > 0.0 {
            // exhaust hotter than exhaust port
            self.state.exhport_qdot_from_exh = arrmin(&[
                // nominal heat transfer to exhaust port
                self.vehthrm.exhport_ha_int
                    * (self.state.exhport_exh_te_in_deg_c - self.state.exhport_te_deg_c),
                // max possible heat transfer from exhaust
                self.state.exh_mdot
                    * (self.air.get_h(self.state.exhport_exh_te_in_deg_c)
                        - self.air.get_h(self.state.exhport_te_deg_c)),
                // max possible heat transfer to exhaust port
                self.vehthrm.exhport_c_kj__k
                    * 1e3
                    * (self.state.exhport_exh_te_in_deg_c - self.state.exhport_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            ]);
        } else {
            // exhaust cooler than exhaust port
            self.state.exhport_qdot_from_exh = arrmax(&[
                // nominal heat transfer to exhaust port
                self.vehthrm.exhport_ha_int
                    * (self.state.exhport_exh_te_in_deg_c - self.state.exhport_te_deg_c),
                // max possible heat transfer from exhaust
                self.state.exh_mdot
                    * (self.air.get_h(self.state.exhport_exh_te_in_deg_c)
                        - self.air.get_h(self.state.exhport_te_deg_c)),
                // max possible heat transfer to exhaust port
                self.vehthrm.exhport_c_kj__k
                    * 1e3
                    * (self.state.exhport_exh_te_in_deg_c - self.state.exhport_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            ]);
        }

        self.state.exhport_qdot_net =
            self.state.exhport_qdot_from_exh - self.state.exhport_qdot_to_amb;
        self.state.exhport_te_deg_c += self.state.exhport_qdot_net
            / (self.vehthrm.exhport_c_kj__k * 1e3)
            * self.sd.cyc.dt_s_at_i(i);
    }

    pub fn thermal_soak_walk(&mut self) {
        self.sd.i = 1;
        while self.sd.i < self.sd.cyc.time_s.len() {
            self.set_thermal_calcs(self.sd.i);
            self.sd.i += 1;
        }
    }

    /// Solve catalyst thermal behavior.
    pub fn set_cat_thermal_calcs(&mut self, i: usize) {
        // external or internal model handling catalyst thermal behavior

        // Constitutive equations for catalyst
        // catalyst film temperature for property calculation
        let cat_te_ext_film_deg_c: f64 = 0.5 * (self.state.cat_te_deg_c + self.state.amb_te_deg_c);
        // density * speed * diameter / dynamic viscosity
        self.state.cat_re_ext = self.air.get_rho(cat_te_ext_film_deg_c, None)
            * self.sd.mps_ach[i - 1]
            * self.vehthrm.cat_l
            / self.air.get_mu(cat_te_ext_film_deg_c);

        // calculate heat transfer coeff. from cat to ambient [W / (m ** 2 * K)]
        if self.sd.mps_ach[i - 1] < 1.0 {
            // if stopped, scale based on constant convection
            self.state.cat_htc_to_amb = self.vehthrm.cat_htc_to_amb_stop;
        } else {
            // if moving, scale based on speed dependent convection and thermostat opening
            // Nusselt number coefficients from Incropera's Intro to Heat Transfer, 5th Ed., eq. 7.44
            let cat_sphere_conv_params = get_sphere_conv_params(self.state.cat_re_ext);
            self.state.fc_htc_to_amb = (cat_sphere_conv_params.0
                * self.state.cat_re_ext.powf(cat_sphere_conv_params.1))
                * self.air.get_pr(cat_te_ext_film_deg_c).powf(1.0 / 3.0)
                * self.air.get_k(cat_te_ext_film_deg_c)
                / self.vehthrm.cat_l;
        }

        if (self.state.cat_te_deg_c - self.state.amb_te_deg_c) > 0.0 {
            // cat hotter than ambient
            self.state.cat_qdot_to_amb = min(
                // nominal heat transfer to ambient
                self.state.cat_htc_to_amb
                    * self.vehthrm.cat_area_ext()
                    * (self.state.cat_te_deg_c - self.state.amb_te_deg_c),
                // max possible heat transfer to ambient
                self.vehthrm.cat_c_kj__K
                    * 1e3
                    * (self.state.cat_te_deg_c - self.state.amb_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        } else {
            // ambient hotter than cat (less common)
            self.state.cat_qdot_to_amb = max(
                // nominal heat transfer to ambient
                self.state.cat_htc_to_amb
                    * self.vehthrm.cat_area_ext()
                    * (self.state.cat_te_deg_c - self.state.amb_te_deg_c),
                // max possible heat transfer to ambient
                self.vehthrm.cat_c_kj__K
                    * 1e3
                    * (self.state.cat_te_deg_c - self.state.amb_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        }

        if self.state.exh_mdot > 5e-4 {
            self.state.cat_exh_te_in_deg_c = min(
                self.air.get_te_from_h(
                    (self.state.exh_hdot_kw * 1e3 - self.state.exhport_qdot_from_exh)
                        / self.state.exh_mdot,
                ),
                self.state.fc_te_adiabatic_deg_c,
            );
            // when flow is small, assume inlet temperature is temporally constant
            // so previous value is not overwritten
        }

        if (self.state.cat_exh_te_in_deg_c - self.state.cat_te_deg_c) > 0.0 {
            // exhaust hotter than cat
            self.state.cat_qdot_from_exh = min(
                // limited by exhaust heat capacitance flow
                self.state.exh_mdot
                    * (self.air.get_h(self.state.cat_exh_te_in_deg_c)
                        - self.air.get_h(self.state.cat_te_deg_c)),
                // limited by catalyst thermal mass temperature change
                self.vehthrm.cab_c_kj__k
                    * 1e3
                    * (self.state.cat_exh_te_in_deg_c - self.state.cat_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        } else {
            // cat hotter than exhaust (less common)
            self.state.cat_qdot_from_exh = max(
                // limited by exhaust heat capacitance flow
                self.state.exh_mdot
                    * (self.air.get_h(self.state.cat_exh_te_in_deg_c)
                        - self.air.get_h(self.state.cat_te_deg_c)),
                // limited by catalyst thermal mass temperature change
                self.vehthrm.cat_c_kj__K
                    * 1e3
                    * (self.state.cat_exh_te_in_deg_c - self.state.cat_te_deg_c)
                    / self.sd.cyc.dt_s_at_i(i),
            );
        }

        // catalyst heat generation
        self.state.cat_qdot = 0.0; // TODO: put something substantive here eventually

        // net heat generetion/transfer in cat
        self.state.cat_qdot_net =
            self.state.cat_qdot + self.state.cat_qdot_from_exh - self.state.cat_qdot_to_amb;

        self.state.cat_te_deg_c +=
            self.state.cat_qdot_net * 1e-3 / self.vehthrm.cat_c_kj__K * self.sd.cyc.dt_s_at_i(i);
    }

    pub fn set_misc_calcs(&mut self, i: usize) {
        // if cycle iteration is used, auxInKw must be re-zeroed to trigger the below if statement
        // TODO: this is probably computationally expensive and was probably a workaround for numba
        // figure out a way to not need this
        if self.sd.aux_in_kw.slice(s![i..]).iter().all(|&x| x == 0.0) {
            // if all elements after i-1 are zero, trigger default behavior; otherwise, use override value
            if self.sd.veh.no_elec_aux {
                self.sd.aux_in_kw[i] = self.sd.veh.aux_kw / self.sd.veh.alt_eff;
            } else {
                self.sd.aux_in_kw[i] = self.sd.veh.aux_kw;
            }
        }
        self.sd.aux_in_kw[i] += self.state.cab_hvac_pwr_aux_kw;
        // Is SOC below min threshold?
        if self.sd.soc[i - 1] < (self.sd.veh.min_soc + self.sd.veh.perc_high_acc_buf) {
            self.sd.reached_buff[i] = false;
        } else {
            self.sd.reached_buff[i] = true;
        }

        // Does the engine need to be on for low SOC or high acceleration
        if self.sd.soc[i - 1] < self.sd.veh.min_soc
            || (self.sd.high_acc_fc_on_tag[i - 1] && !(self.sd.reached_buff[i]))
        {
            self.sd.high_acc_fc_on_tag[i] = true
        } else {
            self.sd.high_acc_fc_on_tag[i] = false
        }
        self.sd.max_trac_mps[i] =
            self.sd.mps_ach[i - 1] + (self.sd.veh.max_trac_mps2 * self.sd.cyc.dt_s_at_i(i));
    }

    pub fn set_comp_lims(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_comp_lims(i)
    }

    pub fn set_power_calcs(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_power_calcs(i)
    }

    pub fn set_ach_speed(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_ach_speed(i)
    }

    pub fn set_hybrid_cont_calcs(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_hybrid_cont_calcs(i)
    }

    pub fn set_fc_forced_state_rust(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_fc_forced_state_rust(i)
    }

    pub fn set_hybrid_cont_decisions(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_hybrid_cont_decisions(i)
    }

    pub fn set_fc_power(&mut self, i: usize) -> Result<(), anyhow::Error> {
        if self.sd.veh.fc_max_kw == 0.0 {
            self.sd.fc_kw_out_ach[i] = 0.0;
        } else if self.sd.veh.fc_eff_type == vehicle::H2FC {
            self.sd.fc_kw_out_ach[i] = min(
                self.sd.cur_max_fc_kw_out[i],
                max(
                    0.0,
                    self.sd.mc_elec_kw_in_ach[i] + self.sd.aux_in_kw[i]
                        - self.sd.ess_kw_out_ach[i]
                        - self.sd.roadway_chg_kw_out_ach[i],
                ),
            );
        } else if self.sd.veh.no_elec_sys
            || self.sd.veh.no_elec_aux
            || self.sd.high_acc_fc_on_tag[i]
        {
            self.sd.fc_kw_out_ach[i] = min(
                self.sd.cur_max_fc_kw_out[i],
                max(
                    0.0,
                    self.sd.trans_kw_in_ach[i] - self.sd.mc_mech_kw_out_ach[i]
                        + self.sd.aux_in_kw[i],
                ),
            );
        } else {
            self.sd.fc_kw_out_ach[i] = min(
                self.sd.cur_max_fc_kw_out[i],
                max(
                    0.0,
                    self.sd.trans_kw_in_ach[i] - self.sd.mc_mech_kw_out_ach[i],
                ),
            );
        }

        if self.sd.veh.fc_max_kw == 0.0 {
            self.sd.fc_kw_out_ach_pct[i] = 0.0;
        } else {
            self.sd.fc_kw_out_ach_pct[i] = self.sd.fc_kw_out_ach[i] / self.sd.veh.fc_max_kw;
        }

        if self.sd.fc_kw_out_ach[i] == 0.0 {
            self.sd.fc_kw_in_ach[i] = 0.0;
            self.sd.fc_kw_out_ach_pct[i] = 0.0;
        } else {
            if let FcModelTypes::Internal(fc_temp_eff_model, fc_temp_eff_comp) =
                &self.vehthrm.fc_model
            {
                if let FcTempEffModel::Linear(FcTempEffModelLinear {
                    offset,
                    slope,
                    minimum,
                }) = fc_temp_eff_model
                {
                    self.state.fc_eta_temp_coeff =
                        max(*minimum, min(1.0, offset + slope * self.state.fc_te_deg_c));
                }

                if let FcTempEffModel::Exponential(FcTempEffModelExponential {
                    offset,
                    lag,
                    minimum,
                }) = fc_temp_eff_model
                {
                    match fc_temp_eff_comp {
                        FcTempEffComponent::FuelConverter => {
                            self.state.fc_eta_temp_coeff = (1.0
                                - f64::exp(-1.0 / lag * (self.state.fc_te_deg_c - offset)))
                            .max(*minimum);
                        }
                        FcTempEffComponent::CatAndFC => {
                            if self.state.cat_te_deg_c < self.vehthrm.cat_te_lightoff_deg_c {
                                self.state.fc_eta_temp_coeff = (1.0
                                    - f64::exp(-1.0 / lag * (self.state.fc_te_deg_c - offset)))
                                .max(*minimum);
                                // reduce efficiency to account for catalyst not being lit off
                                self.state.fc_eta_temp_coeff *= self.vehthrm.cat_fc_eta_coeff;
                            }
                        }
                        FcTempEffComponent::Catalyst => {
                            self.state.fc_eta_temp_coeff = (1.0
                                - f64::exp(-1.0 / lag * (self.state.cat_te_deg_c - offset)))
                            .max(*minimum);
                        }
                    }
                }
            }

            if self.sd.fc_kw_out_ach[i] == ndarrmax(&self.sd.veh.input_kw_out_array) {
                self.sd.fc_kw_in_ach[i] = self.sd.fc_kw_out_ach[i]
                    / (self.sd.veh.fc_eff_array.last().unwrap() * self.state.fc_eta_temp_coeff)
            } else {
                self.sd.fc_kw_in_ach[i] = self.sd.fc_kw_out_ach[i]
                    / (self.sd.veh.fc_eff_array[max(
                        1.0,
                        (first_grtr(
                            &self.sd.veh.fc_kw_out_array,
                            min(
                                self.sd.fc_kw_out_ach[i],
                                ndarrmax(&self.sd.veh.input_kw_out_array) - 0.001,
                            ),
                        )
                        .unwrap()
                            - 1) as f64,
                    ) as usize])
                    / self.state.fc_eta_temp_coeff
            }
        }

        // fs out = fc in
        self.sd.fs_kw_out_ach[i] = self.sd.fc_kw_in_ach[i];

        self.sd.fs_kwh_out_ach[i] = self.sd.fs_kw_out_ach[i] * self.sd.cyc.dt_s_at_i(i) / 3.6e3;
        Ok(())
    }

    pub fn set_time_dilation(&mut self, i: usize) -> Result<(), anyhow::Error> {
        self.sd.set_time_dilation(i)
    }

    pub fn set_post_scalars(&mut self) -> Result<(), anyhow::Error> {
        self.sd.set_post_scalars()
    }
}

#[add_pyo3_api(
    #[new]
    pub fn __new__(
        amb_te_deg_c: Option<f64>,
        fc_te_deg_c_init: Option<f64>,
        cab_te_deg_c_init: Option<f64>,
        exhport_te_deg_c_init: Option<f64>,
        cat_te_deg_c_init: Option<f64>,
    ) -> Self {
        Self::new(
            amb_te_deg_c,
            fc_te_deg_c_init,
            cab_te_deg_c_init,
            exhport_te_deg_c_init,
            cat_te_deg_c_init,
        )
    }
)]
#[allow(non_snake_case)]
#[derive(Deserialize, Serialize, Clone, Debug, PartialEq, HistoryVec)]
/// Struct containing thermal state variables for all thermal components
pub struct ThermalState {
    // fuel converter (engine) variables
    /// fuel converter (engine) temperature [°C]
    pub fc_te_deg_c: f64,
    /// fuel converter temperature efficiency correction
    pub fc_eta_temp_coeff: f64,
    /// fuel converter heat generation per total heat release minus shaft power
    pub fc_qdot_per_net_heat: f64,
    /// fuel converter heat generation [kW]
    pub fc_qdot_kw: f64,
    /// fuel converter convection to ambient [kW]
    pub fc_qdot_to_amb_kw: f64,
    /// fuel converter heat loss to heater core [kW]
    pub fc_qdot_to_htr_kw: f64,
    /// heat transfer coeff [W / (m ** 2 * K)] to amb after arbitration
    pub fc_htc_to_amb: f64,
    /// lambda (air/fuel ratio normalized w.r.t. stoich air/fuel ratio) -- 1 is reasonable default
    pub fc_lambda: f64,
    /// lambda-dependent adiabatic flame temperature
    pub fc_te_adiabatic_deg_c: f64,

    // cabin (cab) variables
    /// cabin temperature [°C]
    pub cab_te_deg_c: f64,
    /// previous cabin temperature [°C]
    pub cab_prev_te_deg_c: f64,
    /// cabin solar load [kw]
    pub cab_qdot_solar_kw: f64,
    /// cabin convection to ambient [kw]
    pub cab_qdot_to_amb_kw: f64,
    /// heat transfer to cabin from hvac system
    pub cab_qdot_from_hvac_kw: f64,
    /// aux load from hvac
    pub cab_hvac_pwr_aux_kw: f64,

    // exhaust variables
    /// exhaust mass flow rate [kg/s]
    pub exh_mdot: f64,
    /// exhaust enthalpy flow rate [kw]
    pub exh_hdot_kw: f64,

    /// exhaust port (exhport) variables
    /// exhaust temperature at exhaust port inlet
    pub exhport_exh_te_in_deg_c: f64,
    /// heat transfer from exhport to amb [kw]
    pub exhport_qdot_to_amb: f64,
    /// catalyst temperature [°C]
    pub exhport_te_deg_c: f64,
    /// convection from exhaust to exhport [W]
    /// positive means exhport is receiving heat
    pub exhport_qdot_from_exh: f64,
    /// net heat generation in cat [W]
    pub exhport_qdot_net: f64,

    // catalyst (cat) variables
    /// catalyst heat generation [W]
    pub cat_qdot: f64,
    /// catalytic converter convection coefficient to ambient [W / (m ** 2 * K)]
    pub cat_htc_to_amb: f64,
    /// heat transfer from catalyst to ambient [W]
    pub cat_qdot_to_amb: f64,
    /// catalyst temperature [°C]
    pub cat_te_deg_c: f64,
    /// exhaust temperature at cat inlet
    pub cat_exh_te_in_deg_c: f64,
    /// catalyst external reynolds number
    pub cat_re_ext: f64,
    /// convection from exhaust to cat [W]
    /// positive means cat is receiving heat
    pub cat_qdot_from_exh: f64,
    /// net heat generation in cat [W]
    pub cat_qdot_net: f64,

    /// ambient temperature
    pub amb_te_deg_c: f64,
    #[serde(skip)]
    pub orphaned: bool,
}

impl SerdeAPI for ThermalState {}

impl ThermalState {
    pub fn new(
        amb_te_deg_c: Option<f64>,
        fc_te_deg_c_init: Option<f64>,
        cab_te_deg_c_init: Option<f64>,
        exhport_te_deg_c_init: Option<f64>,
        cat_te_deg_c_init: Option<f64>,
    ) -> Self {
        // Note default temperature is defined twice, see default()
        let default_te_deg_c: f64 = 22.0;
        let amb_te_deg_c = amb_te_deg_c.unwrap_or(default_te_deg_c);
        Self {
            amb_te_deg_c,
            fc_te_deg_c: fc_te_deg_c_init.unwrap_or(amb_te_deg_c),
            cab_te_deg_c: cab_te_deg_c_init.unwrap_or(amb_te_deg_c),
            cab_prev_te_deg_c: cab_te_deg_c_init.unwrap_or(amb_te_deg_c),
            exhport_te_deg_c: exhport_te_deg_c_init.unwrap_or(amb_te_deg_c),
            cat_te_deg_c: cat_te_deg_c_init.unwrap_or(amb_te_deg_c),
            // fc_te_adiabatic_deg_c // chad is pretty sure 'fc_te_adiabatic_deg_c' gets overridden in first time step
            ..Default::default()
        }
    }
}

impl Default for ThermalState {
    fn default() -> Self {
        // Note default temperature is defined twice, see new()
        let default_te_deg_c: f64 = 22.0;

        Self {
            fc_te_deg_c: default_te_deg_c, // overridden by new()
            fc_eta_temp_coeff: 0.0,
            fc_qdot_per_net_heat: 0.0,
            fc_qdot_kw: 0.0,
            fc_qdot_to_amb_kw: 0.0,
            fc_qdot_to_htr_kw: 0.0,
            fc_htc_to_amb: 0.0,
            fc_lambda: 1.0,
            fc_te_adiabatic_deg_c: default_te_deg_c, // this needs to be calculated, get Chad to revisit

            cab_te_deg_c: default_te_deg_c, // overridden by new()
            cab_prev_te_deg_c: default_te_deg_c,
            cab_qdot_solar_kw: 0.0,
            cab_qdot_to_amb_kw: 0.0,
            cab_qdot_from_hvac_kw: 0.0,
            cab_hvac_pwr_aux_kw: 0.0,

            exh_mdot: 0.0,
            exh_hdot_kw: 0.0,

            exhport_exh_te_in_deg_c: default_te_deg_c,
            exhport_qdot_to_amb: 0.0,
            exhport_te_deg_c: default_te_deg_c, // overridden by new()
            exhport_qdot_from_exh: 0.0,
            exhport_qdot_net: 0.0,

            cat_qdot: 0.0,
            cat_htc_to_amb: 0.0,
            cat_qdot_to_amb: 0.0,
            cat_te_deg_c: default_te_deg_c, // overridden by new()
            cat_exh_te_in_deg_c: default_te_deg_c,
            cat_re_ext: 0.0,
            cat_qdot_from_exh: 0.0,
            cat_qdot_net: 0.0,
            amb_te_deg_c: default_te_deg_c, // overridden by new()

            orphaned: false,
        }
    }
}