1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
//! Regular Fibonacci encoding and decoding of integers, going bit-by-bit.
//! See [here](https://en.wikipedia.org/wiki/Fibonacci_coding).
//!
//! # Usage
//! ```rust
//! // Encoding
//! use fastfibonacci::fibonacci::{encode, decode, FibonacciDecoder};
//! let encoded = encode(&vec![34, 12]) ;
//!
//! // Decoding
//! let decoded = decode(&encoded, false); // 2nd argument: shift all values by -1 (in case we wanted to encode 0 in the fibonacci encoding)
//! assert_eq!(decoded, vec![34,12]);
//!
//! // Alternatively, we can also create an iterator (yields one decoded int at a time)
//! let f = FibonacciDecoder::new(&encoded, false);
//! assert_eq!(f.collect::<Vec<_>>(), vec![34,12])
//! ```
use num::CheckedSub;
use std::fmt::Debug;
use crate::utils::FIB64;
/// note the the entire content of this module is
/// **independent** of the choice of BitOrder, i.e.
/// both Lsb0 and Msb0 work the same way!
use crate::{MyBitSlice, MyBitVector, FbDec};
/// Decoder for Fibonacci encoded integer sequences (allows to iterate)
///
/// Constructed from a bufffer (a binary sequence) which is gradually processed
/// when iterating. The buffer remains unchanged, just the pointers into the buffer move.
///
/// # Example
/// ```rust
/// use fastfibonacci::{FbDec, fibonacci::FibonacciDecoder};
/// use bitvec::prelude::{BitVec, Msb0};
/// let buffer:BitVec<u8, Msb0> = BitVec::from_iter(vec![true, false, true, true, false, true, true, false, true]);
/// let d = FibonacciDecoder::new(buffer.as_bitslice(), false);
/// let mut results = vec![];
/// for decoded in d {
/// println!("{}", decoded);
/// results.push(decoded)
/// }
/// // Will print 4, 2
/// assert_eq!(results, vec![4, 2]);
///
/// ```
// TODO currently this is not possible, as the iterator gets consumed
// // Get the remaining bits in the buffer
// let leftover = d.get_remaining_buffer();
// let expected_leftover :BitVec<u8, Msb0> = BitVec::from_iter(vec![false, true]);
// assert_eq!(leftover, expected_leftover);
#[derive(Debug)]
pub struct FibonacciDecoder<'a> {
buffer: &'a MyBitSlice,
current_pos: usize, // where we are at in the buffer (the last split), i.e the unprocessed part is buffer[current_pos..]
shifted_by_one: bool, // if true, this means that a decoded value of `1` actually is a zero (and was shifted in the encoding)
}
impl<'a> FibonacciDecoder<'a> {
/// Creates a new fibonacci decoder for the given buffer.
/// This leaves the buffer unchanged, just moves a pointer (`self.current_pos`) in the buffer around.
pub fn new(buffer: &'a MyBitSlice, shifted_by_one: bool) -> Self {
FibonacciDecoder {
buffer,
current_pos: 0,
shifted_by_one,
}
}
}
impl<'a> FbDec<'a> for FibonacciDecoder<'a> {
/// Returns the buffer behind the last bit processed.
/// Comes handy when the buffer contains data OTHER than fibonacci encoded
/// data that needs to be processed externally.
fn get_remaining_buffer(&self) -> &'a MyBitSlice {
&self.buffer[self.current_pos..]
}
/// How far did we process into the buffer (pretty much the first bit after a `11`).
fn get_bits_processed(&self) -> usize {
self.current_pos
}
}
impl<'a> Iterator for FibonacciDecoder<'a> {
type Item = u64;
fn next(&mut self) -> Option<Self::Item> {
let mut prev_bit = false;
let mut accumulator = 0;
let current_slice = &self.buffer[self.current_pos..];
// println!("currentslice {:?}", current_slice);
for (idx, current_bit) in current_slice.iter().by_vals().enumerate() {
if idx > 64 {
panic!("fib-codes cant be longer than 64bit, something is wrong!");
}
match (prev_bit, current_bit) {
// current bit set, but not 11
(false, true) => {
accumulator += FIB64[idx];
}
(true, true) => {
// found 11
let hit_len = idx + 1;
self.current_pos += hit_len;
if self.shifted_by_one {
return Some(accumulator - 1);
} else {
return Some(accumulator);
}
}
(false, false) | (true, false) => {} // current bit is zero, nothing to add
}
prev_bit = current_bit
}
None
}
}
/// Slightly faster (2x) encoding of multiple integers into a bitvector via Fibonacci Encoding
pub fn encode(data: &[u64]) -> MyBitVector {
// the capacity is a minimum, assuming each element of data is 1, i.e. `11` in fib encoding
let mut overall = MyBitVector::with_capacity(2 * data.len());
// this just appends to the `overall` bitvec
for &x in data {
bits_from_table_internal(x, FIB64, &mut overall).unwrap();
}
overall
}
/// Fibonacci-decodes the bitstream into integers.
///
/// *Note*: this only decodes to the last delimiter (`11`) and skip any trailing bits.
/// For examples if encoded=`011001` this will decode `011`, but will leave `001` untouched (as it is not proper fibonacci encoding).
///
/// # Parameters:
/// * encoded: bitstream to decode
/// * shifted_by_one: if true, subtracts 1 from each decoded number. In case the data was encoded after shifting (to allow 0 to be encoded)
pub fn decode(encoded: &MyBitSlice, shifted_by_one:bool) -> Vec<u64> {
let dec = FibonacciDecoder::new(encoded, shifted_by_one);
let x: Vec<u64> = dec.collect();
x
// if dec.get_remaining_buffer().is_empty() {
// Err(DecodeError::TrailingBits)
// } else {
// Ok(x)
// }
}
/// Hijacked from <https://github.com/antifuchs/fibonacci_codec>
#[derive(Debug, PartialEq)]
pub enum EncodeError<T>
where
T: Debug + Send + Sync + 'static,
{
/// Indicates an attempt to encode the number `0`, which can't be
/// represented in fibonacci encoding.
ValueTooSmall(T),
/// A bug in fibonacci_codec in which encoding the contained
/// number resulted in an attempt to subtract a larger fibonacci
/// number than the number to encode.
Underflow(T),
}
/// Error when decoding a fibonacci bitstream into integers
pub enum DecodeError
{
/// Raised when decoding a buffer which does NOT terminate with `11`,
/// i.e. there's some trailing bits
TrailingBits
}
/// slightly faster fibonacci endocing (2x faster), taken from
/// <https://github.com/antifuchs/fibonacci_codec>
#[inline]
fn bits_from_table_internal<T>(
n: T,
table: &'static [T],
result: &mut MyBitVector,
) -> Result<(), EncodeError<T>>
where
T: CheckedSub + PartialOrd + Debug + Copy + Send + Sync + 'static,
{
let mut current = n;
let split_pos = table
.iter()
.rposition(|elt| *elt <= n)
.ok_or(EncodeError::ValueTooSmall::<T>(n))?;
let mut i = result.len() + split_pos + 1;
// result.grow(split_pos + 2, false);
result.resize(result.len() + split_pos + 2, false);
result.set(i, true);
for elt in table.split_at(split_pos + 1).0.iter().rev() {
i -= 1;
if elt <= ¤t {
let next = match current.checked_sub(elt) {
Some(next) => next,
None => {
// We encountered an underflow. This is a bug, and
// I have no idea how it could even occur in real
// life. However, let's clean up and return a
// reasonable error:
result.truncate(split_pos + 2);
return Err(EncodeError::Underflow(n));
}
};
current = next;
result.set(i, true);
};
}
Ok(())
}
#[cfg(test)]
mod test {
use crate::fibonacci::{encode, FibonacciDecoder};
use bitvec::prelude::*;
mod test_table {
use crate::fibonacci::{bits_from_table_internal, encode, MyBitVector, FIB64};
use bitvec::vec::BitVec;
#[test]
fn test_1() {
let mut bv: MyBitVector = BitVec::new();
bits_from_table_internal(1, FIB64, &mut bv).unwrap();
assert_eq!(bv.iter().collect::<Vec<_>>(), vec![true, true]);
}
#[test]
fn test_2() {
let mut bv: MyBitVector = BitVec::new();
bits_from_table_internal(2, FIB64, &mut bv).unwrap();
assert_eq!(bv.iter().collect::<Vec<_>>(), vec![false, true, true]);
}
#[test]
fn test_14() {
let mut bv: MyBitVector = BitVec::new();
bits_from_table_internal(14, FIB64, &mut bv).unwrap();
assert_eq!(
bv.iter().collect::<Vec<_>>(),
vec![true, false, false, false, false, true, true]
);
}
#[test]
fn test_consecutive() {
let mut bv: MyBitVector = BitVec::new();
bits_from_table_internal(1, FIB64, &mut bv).unwrap();
bits_from_table_internal(2, FIB64, &mut bv).unwrap();
bits_from_table_internal(1, FIB64, &mut bv).unwrap();
assert_eq!(
bv.iter().collect::<Vec<_>>(),
vec![true, true, false, true, true, true, true]
);
}
#[test]
fn test_encode() {
let x = vec![1, 2, 3];
let bv = encode(&x);
assert_eq!(
bv.iter().collect::<Vec<_>>(),
vec![true, true, false, true, true, false, false, true, true]
);
}
#[test]
fn test_encode_single_item() {
let x = vec![3];
let bv = encode(&x);
assert_eq!(
bv.iter().collect::<Vec<_>>(),
vec![false, false, true, true]
);
}
}
#[test]
fn test_encode_mutiple() {
let enc = encode(&vec![1, 14]);
assert_eq!(
enc.iter().collect::<Vec<_>>(),
vec![true, true, true, false, false, false, false, true, true]
);
}
// #[test]
// #[should_panic(expected = "n must be positive")]
// fn test_fib_encode_0() {
// fib_enc(0);
// }
// #[test]
// #[should_panic(expected = "n must be smaller than max fib")]
// fn test_fib_encode_u64max() {
// fib_enc(u64::MAX);
// }
#[test]
fn test_myfib_decoder() {
// let v: Vec<bool> = vec![0,0,1,1].iter().map(|x|*x==1).collect();
// let b: MyBitVector = BitVec::from_iter(v.into_iter());
let b = bits![u8, Msb0; 0,0,1,1];
// println!("full : {:?}", b);
let mut my = FibonacciDecoder {
buffer: b,
current_pos: 0,
shifted_by_one: false,
};
assert_eq!(my.next(), Some(3));
assert_eq!(my.next(), None);
}
#[test]
fn test_myfib_decoder_consecutive_ones() {
let b = bits![u8, Msb0; 0,0,1,1,1,1];
println!("full : {:?}", b);
let mut my = FibonacciDecoder {
buffer: b,
current_pos: 0,
shifted_by_one: false,
};
assert_eq!(my.next(), Some(3));
assert_eq!(my.next(), Some(1));
assert_eq!(my.next(), None);
}
#[test]
fn test_myfib_decoder_nothing() {
let b = bits![u8, Msb0; 0,0,1,0,1,0,1];
let mut my = FibonacciDecoder {
buffer: b,
current_pos: 0,
shifted_by_one: false,
};
assert_eq!(my.next(), None);
// shift
let mut my = FibonacciDecoder {
buffer: b,
current_pos: 0,
shifted_by_one: true,
};
assert_eq!(my.next(), None);
}
#[test]
fn test_myfib_decoder_shifted() {
// let v: Vec<bool> = vec![0,0,1,1].iter().map(|x|*x==1).collect();
// let b: MyBitVector = BitVec::from_iter(v.into_iter());
let b = bits![u8, Msb0; 0,0,1,1,1,1];
// println!("full : {:?}", b);
let mut my = FibonacciDecoder {
buffer: b,
current_pos: 0,
shifted_by_one: true,
};
assert_eq!(my.next(), Some(2));
assert_eq!(my.next(), Some(0));
assert_eq!(my.next(), None);
}
}