1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use crate::bloom::BloomFilter;
#[derive(Clone)]
#[derive(Debug)]
pub struct FilterBuilder {
pub expected_elements: u64,
pub false_positive_probability: f64,
pub size: u64,
pub hashes: u32,
pub(crate) done: bool,
}
#[cfg(target_pointer_width = "32")]
pub(crate) const SUFFIX: u64 = 0b0001_1111;
#[cfg(target_pointer_width = "64")]
pub(crate) const SUFFIX: usize = 0b0011_1111;
#[cfg(target_pointer_width = "32")]
pub(crate) const MASK: u64 = 0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11100000;
#[cfg(target_pointer_width = "64")]
pub(crate) const MASK: u64 = 0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11000000;
#[inline]
fn optimal_m(n: u64, p: f64) -> u64 {
let fact = -(n as f64) * p.ln();
let div = 2f64.ln().powi(2);
let m: f64 = fact / div;
let mut m = m.ceil() as u64;
if (m & SUFFIX as u64) != 0 {
m = (m & MASK) + SUFFIX as u64 + 1;
};
m
}
#[inline]
fn optimal_k(n: u64, m: u64) -> u32 {
let k: f64 = (m as f64 * 2f64.ln()) / n as f64;
k.ceil() as u32
}
#[inline]
fn optimal_n(k: u32, m: u64) -> u64 {
let n = (2f64.ln() * m as f64) / k as f64;
n.ceil() as u64
}
#[inline]
fn optimal_p(k: u32, m: u64, n: u64) -> f64 {
let nk = -(k as f64);
(1.0 - (nk * n as f64 / m as f64).exp()).powi(k as i32)
}
impl FilterBuilder {
pub fn new(expected_elements: u64, false_positive_probability: f64) -> Self {
FilterBuilder {
expected_elements,
false_positive_probability,
size: 0,
hashes: 0,
done: false,
}
}
pub fn from_size_and_hashes(size: u64, hashes: u32) -> Self {
let n = optimal_n(hashes, size);
let p = optimal_p(hashes, size, n);
FilterBuilder {
expected_elements: n,
false_positive_probability: p,
size,
hashes,
done: true,
}
}
fn expected_elements(&mut self, expected_elements: u64) {
assert!(expected_elements > 0, "expected_elements must larger than 0!");
self.expected_elements = expected_elements;
}
fn false_positive_probability(&mut self, false_positive_probability: f64) {
assert!(false_positive_probability < 1.0 && false_positive_probability > 0.0,
"false_positive_probability must between (0.0, 1.0)!");
self.false_positive_probability = false_positive_probability;
}
fn size(&mut self, size: u64) {
assert_eq!(size & SUFFIX as u64, 0);
self.size = size;
}
pub(crate) fn complete(&mut self) {
if !self.done {
if self.size == 0 {
self.size = optimal_m(self.expected_elements, self.false_positive_probability);
self.hashes = optimal_k(self.expected_elements, self.size);
}
self.done = true;
}
}
pub fn build_bloom_filter(&mut self) -> BloomFilter {
self.complete();
BloomFilter::new(self.clone())
}
pub(crate) fn is_compatible_to(&self, other: &FilterBuilder) -> bool {
self.size == other.size && self.hashes == other.hashes
}
}
#[test]
fn optimal_test() {
let m = optimal_m(100_000_000, 0.01);
let k = optimal_k(100_000_000, m);
let n = optimal_n(k, m);
let p = optimal_p(k, m, n);
println!("{m} {k} {n} {p}");
assert_eq!(m, 958505856);
assert_eq!(k, 7)
}
#[test]
fn builder_test() {
let mut bloom = FilterBuilder::new(100_000_000, 0.01)
.build_bloom_filter();
bloom.add(b"helloworld");
assert_eq!(bloom.contains(b"helloworld"), true);
assert_eq!(bloom.contains(b"helloworld!"), false);
}