1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//! # Matrix
//!
//! A matrix implementation that supports basic matrix operations. The heavy functions are all parallelized (once better generics are implemented into Rust).
//!
//! > This Matrix implementation is **NOT** meant to be used as a general purpose matrix library. It is only meant to be used for the neural network library for now.
//!
//! > A stack-based matrix implementation is planned for the future.
//!

use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use serde_json;
use std::f64;
use std::fmt::{self, Display, Formatter};

/// A matrix implementation that supports basic matrix operations.
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct Matrix {
    pub data: Vec<f64>,
    pub rows: usize,
    pub cols: usize,
}

impl Matrix {
    /// Creates a new matrix with the given dimensions.
    ///
    /// ## Example
    /// ```
    /// let matrix = Matrix::new(3, 2);
    /// ```
    pub fn new(rows: usize, cols: usize) -> Self {
        debug_assert!(rows > 0 && cols > 0);
        Matrix {
            data: vec![0.0; rows * cols],
            rows,
            cols,
        }
    }

    /// Creates a new matrix with the given dimensions and fills it with the given value.
    ///
    /// ## Example
    /// ```
    /// use fast_neural_network::matrix::*;
    ///
    /// let matrix = Matrix::from_vec(
    ///     vec![0.03, 0.62, 0.85, 0.60, 0.62, 0.64],
    ///     3,
    ///     2,);
    ///
    /// assert_eq!(matrix.get(0, 1), 0.62);
    /// assert_eq!(matrix.rows(), 3);
    /// assert_eq!(matrix.cols(), 2);
    /// ```
    ///
    pub fn from_vec(vec: Vec<f64>, rows: usize, cols: usize) -> Self {
        debug_assert!(rows > 0 && cols > 0 && rows * cols == vec.len());
        Matrix {
            data: vec,
            rows,
            cols,
        }
    }

    /// Creates a new matrix from the given JSON string.
    ///
    /// ## Example
    /// ```
    /// use fast_neural_network::matrix::*;
    ///
    /// let matrix = Matrix::from_json(
    ///    r#"{
    ///       "data": [
    ///         0.03,
    ///         0.62,
    ///         0.85,
    ///         0.60,
    ///         0.62,
    ///         0.64
    ///         ],
    ///         "rows": 3,
    ///         "cols": 2
    ///     }"#);
    ///
    /// assert_eq!(matrix.get(0, 1), 0.62);
    /// ```
    ///
    pub fn from_json(json: &str) -> Self {
        serde_json::from_str(json).unwrap()
    }

    /// transforms the matrix into a JSON string.
    ///
    /// ## Example
    /// ```
    /// use fast_neural_network::matrix::*;
    ///
    /// let matrix = Matrix::from_vec(
    ///     vec![0.03, 0.62, 0.85, 0.60, 0.62, 0.64],
    ///     3,
    ///     2,);
    ///
    /// assert_eq!(matrix.to_json(), r#"{"data":[0.03,0.62,0.85,0.6,0.62,0.64],"rows":3,"cols":2}"#);
    /// ```
    pub fn to_json(&self) -> String {
        serde_json::to_string(self).unwrap()
    }

    /// Saves the matrix to the given path.
    ///
    /// ## Example
    /// ```
    /// use fast_neural_network::matrix::*;
    ///
    /// let matrix = Matrix::from_vec(
    ///     vec![0.03, 0.62, 0.85, 0.60, 0.62, 0.64],
    ///     3,
    ///     2,);
    ///
    /// matrix.save("matrix.json");
    /// ```
    pub fn save(&self, path: &str) {
        std::fs::write(path, self.to_json()).unwrap();
    }

    /// Transposes the matrix.
    pub fn transpose(&self) -> Matrix {
        let mut result = Matrix::new(self.cols(), self.rows());
        for i in 0..self.rows() {
            for j in 0..self.cols() {
                result.set(j, i, self.get(i, j));
            }
        }
        result
    }

    /// Gets the value at the given row and column.
    pub fn get(&self, row: usize, col: usize) -> f64 {
        debug_assert!(row < self.rows && col < self.cols);
        self.data[self.cols * row + col]
    }

    /// Sets the value at the given row and column.
    pub fn set(&mut self, row: usize, col: usize, value: f64) {
        debug_assert!(row < self.rows && col < self.cols);
        self.data[self.cols * row + col] = value;
    }

    /// Returns the number of rows
    pub fn rows(&self) -> usize {
        self.rows
    }

    /// Returns the number of columns
    pub fn cols(&self) -> usize {
        self.cols
    }

    /// Multiplies the matrix with the given matrix.
    pub fn dot(&self, other: &Self) -> Matrix {
        debug_assert!(self.cols() == other.rows());

        Matrix {
            data: (0..self.rows())
                .into_par_iter()
                .flat_map(|i| {
                    (0..other.cols())
                        .into_par_iter()
                        .map(|j| {
                            (0..self.cols())
                                .into_par_iter()
                                .map(|k| self.get(i, k) * other.get(k, j))
                                .sum()
                        })
                        .collect::<Vec<f64>>()
                })
                .collect::<Vec<f64>>(),
            rows: self.rows(),
            cols: other.cols(),
        }

        // for i in 0..self.rows() {
        //     for j in 0..other.cols() {
        //         let mut sum = 0.0;
        //         for k in 0..self.cols() {
        //             sum += self.get(i, k) * other.get(k, j);
        //         }
        //         result.set(i, j, sum);
        //     }
        // }
        // result
    }

    /// Multiplies the matrix with the given vector.
    pub fn dot_vec(&self, other: &Vec<f64>) -> Vec<f64> {
        debug_assert!(self.cols() == other.len());

        let mut result = vec![0.0; self.rows()];
        for i in 0..self.rows() {
            for j in 0..self.cols() {
                let a = self.get(i, j);
                let b = other[j];
                result[i] += a * b;
            }
        }
        result
    }

    /// Multiplies the matrix with the given vector.
    pub fn scalar_mul(&self, scalar: f64) -> Matrix {
        let mut result = Matrix::new(self.rows(), self.cols());
        for i in 0..self.rows() {
            for j in 0..self.cols() {
                result.set(i, j, self.get(i, j) * scalar);
            }
        }
        result
    }

    /// Subptracts the given matrix from the matrix.
    pub fn sub(&self, other: &Self) -> Matrix {
        debug_assert!(self.rows() == other.rows() && self.cols() == other.cols());

        let mut result = Matrix::new(self.rows(), self.cols());
        for i in 0..self.rows() {
            for j in 0..self.cols() {
                result.set(i, j, self.get(i, j) - other.get(i, j));
            }
        }
        result
    }

    /// transforms the matrix into a vector.
    pub fn to_vec(&self) -> Vec<f64> {
        debug_assert!(self.cols() == 1);
        self.data.clone()
    }
}

impl Display for Matrix {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let mut output = String::new();
        for i in 0..self.rows() {
            for j in 0..self.cols() {
                output.push_str(&format!("{} ", self.get(i, j)));
            }
            output.push_str("\n");
        }
        write!(f, "{}", output)
    }
}