1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use crate::inner::OrderedInner;
use std::fmt::Debug;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

/// The Ordered Mutex has its mechanism of locking order when you have concurrent access to data.
/// It will work well when you needed step by step data locking like sending UDP packages in a specific order.
///
/// The main difference with the standard `Mutex` is ordered mutex will check an ordering of blocking.
/// This way has some guaranties of mutex execution order, but it's a little bit slowly than original mutex.
#[derive(Debug)]
pub struct OrderedMutex<T: ?Sized> {
    inner: OrderedInner<T>,
}

impl<T> OrderedMutex<T> {
    /// Create a new `OrderedMutex`
    #[inline]
    pub const fn new(data: T) -> OrderedMutex<T> {
        OrderedMutex {
            inner: OrderedInner::new(data),
        }
    }
}

impl<T: ?Sized> OrderedMutex<T> {
    /// Acquires the mutex.
    ///
    /// Returns a guard that releases the mutex and wake the next locker when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use fast_async_mutex::mutex_ordered::OrderedMutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = OrderedMutex::new(10);
    ///     let guard = mutex.lock().await;
    ///     assert_eq!(*guard, 10);
    /// }
    /// ```
    #[inline]
    pub fn lock(&self) -> OrderedMutexGuardFuture<T> {
        OrderedMutexGuardFuture {
            mutex: &self,
            id: self.inner.generate_id(),
            is_realized: false,
        }
    }

    /// Acquires the mutex.
    ///
    /// Returns a guard that releases the mutex and wake the next locker when dropped.
    /// `OrderedMutexOwnedGuard` have a `'static` lifetime, but requires the `Arc<OrderedMutex<T>>` type
    ///
    /// # Examples
    ///
    /// ```
    /// use fast_async_mutex::mutex_ordered::OrderedMutex;
    /// use std::sync::Arc;
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = Arc::new(OrderedMutex::new(10));
    ///     let guard = mutex.lock_owned().await;
    ///     assert_eq!(*guard, 10);
    /// }
    /// ```
    #[inline]
    pub fn lock_owned(self: &Arc<Self>) -> OrderedMutexOwnedGuardFuture<T> {
        OrderedMutexOwnedGuardFuture {
            mutex: self.clone(),
            id: self.inner.generate_id(),
            is_realized: false,
        }
    }
}

/// The Simple OrderedMutex Guard
/// As long as you have this guard, you have exclusive access to the underlying `T`. The guard internally borrows the OrderedMutex, so the mutex will not be dropped while a guard exists.
/// The lock is automatically released and waked the next locker whenever the guard is dropped, at which point lock will succeed yet again.
#[derive(Debug)]
pub struct OrderedMutexGuard<'a, T: ?Sized> {
    mutex: &'a OrderedMutex<T>,
}

#[derive(Debug)]
pub struct OrderedMutexGuardFuture<'a, T: ?Sized> {
    mutex: &'a OrderedMutex<T>,
    id: usize,
    is_realized: bool,
}

/// An owned handle to a held OrderedMutex.
/// This guard is only available from a OrderedMutex that is wrapped in an `Arc`. It is identical to `OrderedMutexGuard`, except that rather than borrowing the `OrderedMutex`, it clones the `Arc`, incrementing the reference count. This means that unlike `OrderedMutexGuard`, it will have the `'static` lifetime.
/// As long as you have this guard, you have exclusive access to the underlying `T`. The guard internally keeps a reference-couned pointer to the original `OrderedMutex`, so even if the lock goes away, the guard remains valid.
/// The lock is automatically released and waked the next locker whenever the guard is dropped, at which point lock will succeed yet again.
#[derive(Debug)]
pub struct OrderedMutexOwnedGuard<T: ?Sized> {
    mutex: Arc<OrderedMutex<T>>,
}

#[derive(Debug)]
pub struct OrderedMutexOwnedGuardFuture<T: ?Sized> {
    mutex: Arc<OrderedMutex<T>>,
    id: usize,
    is_realized: bool,
}

impl<'a, T: ?Sized> Future for OrderedMutexGuardFuture<'a, T> {
    type Output = OrderedMutexGuard<'a, T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if self.mutex.inner.try_acquire(self.id) {
            self.is_realized = true;
            Poll::Ready(OrderedMutexGuard { mutex: self.mutex })
        } else {
            self.mutex.inner.store_waker(cx.waker());
            Poll::Pending
        }
    }
}

impl<T: ?Sized> Future for OrderedMutexOwnedGuardFuture<T> {
    type Output = OrderedMutexOwnedGuard<T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if self.mutex.inner.try_acquire(self.id) {
            self.is_realized = true;
            Poll::Ready(OrderedMutexOwnedGuard {
                mutex: self.mutex.clone(),
            })
        } else {
            self.mutex.inner.store_waker(cx.waker());
            Poll::Pending
        }
    }
}

crate::impl_send_sync_mutex!(OrderedMutex, OrderedMutexGuard, OrderedMutexOwnedGuard);

crate::impl_deref_mut!(OrderedMutexGuard, 'a);
crate::impl_deref_mut!(OrderedMutexOwnedGuard);

crate::impl_drop_guard!(OrderedMutexGuard, 'a, unlock);
crate::impl_drop_guard!(OrderedMutexOwnedGuard, unlock);
crate::impl_drop_guard_future!(OrderedMutexGuardFuture, 'a, unlock);
crate::impl_drop_guard_future!(OrderedMutexOwnedGuardFuture, unlock);

#[cfg(test)]
mod tests {
    use crate::mutex_ordered::{OrderedMutex, OrderedMutexGuard, OrderedMutexOwnedGuard};
    use futures::executor::block_on;
    use futures::{FutureExt, StreamExt, TryStreamExt};
    use std::ops::AddAssign;
    use std::sync::atomic::AtomicUsize;
    use std::sync::Arc;
    use tokio::time::{sleep, Duration};

    #[tokio::test(flavor = "multi_thread", worker_threads = 12)]
    async fn test_mutex() {
        let c = OrderedMutex::new(0);

        futures::stream::iter(0..10000)
            .for_each_concurrent(None, |_| async {
                let mut co: OrderedMutexGuard<i32> = c.lock().await;
                *co += 1;
            })
            .await;

        let co = c.lock().await;
        assert_eq!(*co, 10000)
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 12)]
    async fn test_mutex_delay() {
        let expected_result = 100;
        let c = OrderedMutex::new(0);

        futures::stream::iter(0..expected_result)
            .then(|i| c.lock().map(move |co| (i, co)))
            .for_each_concurrent(None, |(i, mut co)| async move {
                sleep(Duration::from_millis(expected_result - i)).await;
                *co += 1;
            })
            .await;

        let co = c.lock().await;
        assert_eq!(*co, expected_result)
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 12)]
    async fn test_owned_mutex() {
        let c = Arc::new(OrderedMutex::new(0));

        futures::stream::iter(0..10000)
            .for_each_concurrent(None, |_| async {
                let mut co: OrderedMutexOwnedGuard<i32> = c.lock_owned().await;
                *co += 1;
            })
            .await;

        let co = c.lock_owned().await;
        assert_eq!(*co, 10000)
    }

    #[tokio::test]
    async fn test_container() {
        let c = OrderedMutex::new(String::from("lol"));

        let mut co: OrderedMutexGuard<String> = c.lock().await;
        co.add_assign("lol");

        assert_eq!(*co, "lollol");
    }

    #[tokio::test]
    async fn test_overflow() {
        let mut c = OrderedMutex::new(String::from("lol"));

        c.inner.state = AtomicUsize::new(usize::max_value());
        c.inner.current = AtomicUsize::new(usize::max_value());

        let mut co: OrderedMutexGuard<String> = c.lock().await;
        co.add_assign("lol");

        assert_eq!(*co, "lollol");
    }

    #[tokio::test]
    async fn test_timeout() {
        let c = OrderedMutex::new(String::from("lol"));

        let co: OrderedMutexGuard<String> = c.lock().await;

        futures::stream::iter(0..10000i32)
            .then(|_| tokio::time::timeout(Duration::from_nanos(1), c.lock()))
            .try_for_each_concurrent(None, |_c| futures::future::ok(()))
            .await
            .expect_err("timout must be");

        drop(co);

        let mut co: OrderedMutexGuard<String> = c.lock().await;
        co.add_assign("lol");

        assert_eq!(*co, "lollol");
    }

    #[test]
    fn multithreading_test() {
        let num = 100;
        let mutex = Arc::new(OrderedMutex::new(0));
        let ths: Vec<_> = (0..num)
            .map(|_| {
                let mutex = mutex.clone();
                std::thread::spawn(move || {
                    block_on(async {
                        let mut lock = mutex.lock().await;
                        *lock += 1;
                    })
                })
            })
            .collect();

        for thread in ths {
            thread.join().unwrap();
        }

        block_on(async {
            let lock = mutex.lock().await;
            assert_eq!(num, *lock)
        })
    }
}