1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright 2016 Google Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

//! Analysis of regex expressions.

use bit_set::BitSet;
use std::cmp::min;
use std::usize;

use Expr;

#[derive(Debug)]
pub struct Info<'a> {
    pub expr: &'a Expr,
    pub next_sibling: usize,
    pub start_group: usize,
    pub end_group: usize,
    pub min_size: usize,
    pub const_size: bool,
    pub hard: bool,
    pub looks_left: bool,
}

#[derive(Debug)]
pub struct Analysis<'a> {
    pub infos: Vec<Info<'a>>,
    pub backrefs: &'a BitSet,
    pub group_ix: usize,
}

impl<'a> Analysis<'a> {
    pub fn analyze(expr: &'a Expr, backrefs: &'a BitSet) -> Analysis<'a> {
        let mut analysis = Analysis {
            infos: Vec::new(),
            backrefs: backrefs,
            group_ix: 0,
        };
        analysis.visit(expr);
        analysis
    }

    fn visit(&mut self, expr: &'a Expr) {
        let ix = self.infos.len();
        self.infos.push(Info {
            expr: expr,
            next_sibling: 0,
            start_group: self.group_ix,
            end_group: self.group_ix,
            min_size: 0,
            const_size: false,
            hard: false,
            looks_left: false,
        });
        let mut min_size = 0;
        let mut const_size = false;
        let mut hard = false;
        let mut looks_left = false;
        match *expr {
            Expr::Empty | Expr::EndText | Expr::EndLine => {
                const_size = true;
            }
            Expr::Any{..} => {
                min_size = 1;
                const_size = true;
            }
            Expr::Literal{ ref val, casei } => {
                // right now each character in a literal gets its own node, that might change
                min_size = 1;
                const_size = literal_const_size(val, casei);
            }
            Expr::StartText | Expr::StartLine => {
                const_size = true;
                looks_left = true;
            }
            Expr::Concat(ref v) => {
                let mut last_ix = usize::MAX;
                const_size = true;
                for child in v {
                    let ix = self.infos.len();
                    self.visit(child);
                    if last_ix != usize::MAX {
                        self.infos[last_ix].next_sibling = ix;
                    }
                    looks_left |= self.infos[ix].looks_left && min_size == 0;
                    min_size += self.infos[ix].min_size;
                    const_size &= self.infos[ix].const_size;
                    hard |= self.infos[ix].hard;
                    last_ix = ix;
                }
            }
            Expr::Alt(ref v) => {
                let ix = self.infos.len();
                self.visit(&v[0]);
                min_size = self.infos[ix].min_size;
                const_size = self.infos[ix].const_size;
                hard = self.infos[ix].hard;
                let mut last_ix = ix;
                for child in &v[1..] {
                    let ix = self.infos.len();
                    self.visit(child);
                    self.infos[last_ix].next_sibling = ix;
                    const_size &= self.infos[ix].const_size && min_size == self.infos[ix].min_size;
                    min_size = min(min_size, self.infos[ix].min_size);
                    hard |= self.infos[ix].hard;
                    looks_left |= self.infos[ix].looks_left;
                    last_ix = ix;
                }
            }
            Expr::Group(ref child) => {
                let group = self.group_ix;
                self.group_ix += 1;
                let ix = self.infos.len();
                self.visit(child);
                let child_info = &self.infos[ix];
                min_size = child_info.min_size;
                const_size = child_info.const_size;
                looks_left = child_info.looks_left;
                hard = child_info.hard | self.backrefs.contains(group);
            }
            Expr::LookAround(ref child, _) => {
                self.visit(child);
                // min_size = 0
                const_size = true;
                hard = true;
                looks_left = self.infos[ix].looks_left;
            }
            Expr::Repeat { ref child, lo, hi, .. } => {
                let ix = self.infos.len();
                self.visit(child);
                let child_info = &self.infos[ix];
                min_size = child_info.min_size * lo;
                const_size = child_info.const_size && lo == hi;
                hard = child_info.hard;
                looks_left = child_info.looks_left;
            }
            Expr::Delegate { size, .. } => {
                // currently only used for empty and single-char matches
                min_size = size;
                const_size = true;
                looks_left = size == 0;  // TODO: conservative for \z
            }
            Expr::Backref(_) => {
                hard = true;
            }
        }
        self.infos[ix].end_group = self.group_ix;
        self.infos[ix].min_size = min_size;
        self.infos[ix].const_size = const_size;
        self.infos[ix].hard = hard;
        self.infos[ix].looks_left = looks_left;
    }

    pub fn n_groups(&self) -> usize {
        self.infos[0].end_group
    }

    pub fn is_literal(&self, ix: usize) -> bool {
        match *self.infos[ix].expr {
            Expr::Literal { casei, .. } => !casei,
            Expr::Concat(_) => {
                let mut child = ix + 1;
                loop {
                    if !self.is_literal(child) { return false; }
                    child = self.infos[child].next_sibling;
                    if child == 0 { break; }
                }
                true
            }
            _ => false
        }
    }

    pub fn push_literal(&self, ix: usize, buf: &mut String) {
        match *self.infos[ix].expr {
            // could be more paranoid about checking casei
            Expr::Literal { ref val, .. } => buf.push_str(val),
            Expr::Concat(_) => {
                let mut child = ix + 1;
                loop {
                    self.push_literal(child, buf);
                    child = self.infos[child].next_sibling;
                    if child == 0 { break; }
                }
            }
            _ => panic!("push_literal called on non-literal")
        }
    }
}

fn literal_const_size(_: &str, _: bool) -> bool {
    // Right now, regex doesn't do sophisticated case folding,
    // test below will fail when that changes, then we need to
    // do something fancier here.
    true
}

#[cfg(test)]
mod tests {
    use regex;
    use super::literal_const_size;

    #[test]
    fn case_folding_safe() {
        let re = regex::Regex::new("(?i:ß)").unwrap();
        if re.is_match("SS") {
            assert!(!literal_const_size("ß", true));
        }

        // Another tricky example, Armenian ECH YIWN
        let re = regex::Regex::new("(?i:\\x{0587})").unwrap();
        if re.is_match("\u{0565}\u{0582}") {
            assert!(!literal_const_size("\u{0587}", true));
        }
    }
}