1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
//! [`Fallible`](crate::Fallible) is an [`Option`](::core::option::Option) with inverted [`Try`](https://doc.rust-lang.org/stable/core/ops/trait.Try.html#)-semantics.
//!
//! What this means is that using the `?` operator on a `Fallible<E>` will exit early
//! if an error `E` is contained within, or instead act as a no-op, if the value is `Success`.
//!
//! This is in contrast to `Option` where using `?` on a `None`-value will exit early.
//!
//! `Fallible` fills the gap left by the [`Result`](::core::result::Result) and [`Option`](::core::option::Option) types:
//!
//! | Potential Success | Potential Failure |
//! |---------------------|-------------------|
//! | `Result<T` | `, E>` |
//! | `Option<T>` | **`Fallible<E>`** |
//!
//! ## Example
//! This code illustrates how `Fallible` can be used to write succint
//! validation code which exits early in case of failure.
//!
//! ```rust
//! use fallible_option::Fallible::{self, Fail, Success};
//!
//! # fn test_chained_failures() {
//! // Validates the input number `n`, returning a `Fail`
//! // if the input number is zero, or `Success` otherwise.
//! fn fails_if_number_is_zero(n: u32) -> Fallible<&'static str> {
//! if n == 0 {
//! Fail("number is zero")
//! } else {
//! Success
//! }
//! };
//!
//! // Check many numbers, returning early if a tested
//! // number is equal to zero.
//! fn check_many_numbers() -> Fallible<&'static str> {
//! fails_if_number_is_zero(1)?;
//! fails_if_number_is_zero(3)?;
//! fails_if_number_is_zero(0)?; // <--- Will cause early exit
//!
//! // Following lines are never reached
//! fails_if_number_is_zero(10)?;
//!
//! Success
//! }
//!
//! assert_eq!(check_many_numbers(), Fallible::Fail("number is zero"));
//! # }
//! ```
//!
//! ## Motivation
//! `Fallible` fills the gap left by `Option` and `Result` and clearly conveys intent and potential outcomes of a function.
//!
//! A function which returns `Fallible` has only two potential outcomes, it can fail with an error `E`, or it can succeed.
//!
//! ### Why not `Result`?
//! Because `Result` implies output. Take `std::fs::rename` for instance:
//!
//! If I told you that the return type of `rename` was a `Result<T, E>`, what would you guess `T` and `E` to be?
//!
//! You might rightly assume that `E` was `std::io::Error`, but what about `T`? It could reasonably return any number of things:
//! * The canonical path of the destination of the renamed file.
//! * The size of the moved file.
//! * The size of the file (if any) replaced by the renamed file.
//! * Or perhaps even a handle to the overwritten file.
//!
//! Of course none of these are true, as the `T` value of `rename` is the unit value `()`. `rename` never
//! produces any output, it can only signal errors. So why not signal that clearly to the user?
//!
//! I would argue that using a type which signals the potential for failure, but no output upon success would
//! more clearly express the intent and potential outcomes when using this function.
//!
//! ### Why not `Option`?
//! Potential failure *could* be expressed using an `Option<E>`, but as stated above, the `Try`-semantics
//! of `Option` makes it unergonomic to work with:
//!
//! ```rust
//! type Error = &'static str;
//!
//! fn fails_if_number_is_zero(n: u32) -> Option<Error> {
//! if n == 0 {
//! Some("number is zero")
//! } else {
//! None
//! }
//! };
//!
//! fn check_many_numbers() -> Option<Error> {
//! // We have to explicitly check, since using `?` here would result in an early exit,
//! // if the call returned None, which is the opposite of what we intend.
//! if let Some(err) = fails_if_number_is_zero(1) {
//! return Some(err)
//! }
//!
//! // .. Repeating the above three lines for each check is tedious compared to
//! // just using the `?` operator, as in the example.
//!
//! None
//! }
//! ```
//!
//! ## Conversion from `Result`
//! Switching from using `Result` to `Fallible` is very simple, as illustrated with this before/after example:
//!
//! ```rust
//! fn validate_number(x: u32) -> Result<(), &'static str> {
//! match x {
//! 0 ..= 9 => Err("number is too small"),
//! 10..=30 => Ok(()),
//! 31.. => Err("number is too large")
//! }
//! }
//! ```
//! Using `Fallible`:
//!
//! ```rust
//! # use fallible_option::Fallible::{self, Fail, Success};
//! fn validate_number(x: u32) -> Fallible<&'static str> {
//! match x {
//! 0 ..= 9 => Fail("number is too small"),
//! 10..=30 => Success,
//! 31.. => Fail("number is too large")
//! }
//! }
//! ```
//! ## Compatibility
//!
//! `Fallible` contains utility functions for mapping to and from [`Result`] and [`Option`],
//! as well as [`FromResidual`] implementations for automatically performing these conversions
//! when used with the `?` operator.
//! ```rust
//! # use fallible_option::Fallible::{self, Fail, Success};
//! fn fails_if_true(should_fail: bool) -> Fallible<&'static str> {
//! if should_fail {
//! Fail("Darn it!")
//! } else {
//! Success
//! }
//! }
//!
//! fn try_producing_value() -> Result<u32, &'static str> {
//! fails_if_true(false)?;
//! fails_if_true(true)?;
//!
//! Ok(10)
//! }
//! ```
#![no_std]
#![deny(
bad_style,
dead_code,
improper_ctypes,
non_shorthand_field_patterns,
no_mangle_generic_items,
overflowing_literals,
path_statements,
patterns_in_fns_without_body,
private_in_public,
unconditional_recursion,
unused,
unused_allocation,
unused_comparisons,
unused_parens,
while_true,
missing_debug_implementations,
missing_docs,
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
unused_results
)]
#![forbid(unsafe_code)]
#![feature(try_trait_v2)]
#![feature(const_trait_impl)]
#![feature(const_mut_refs)]
#![feature(const_replace)]
use core::convert::Infallible;
use core::fmt::Debug;
use core::marker::Destruct;
use core::mem;
use core::ops::{ControlFlow, Deref, DerefMut, FromResidual, Try};
/// Outcome of an operation that does not produce a value on success.
#[must_use]
#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
pub enum Fallible<E> {
/// No error was produced.
Success,
/// An error was produced.
Fail(E),
}
use Fallible::{Fail, Success};
impl<E> Fallible<E> {
/// Converts from `Fallible<E>` (or `&Fallible<E>`) to `Fallible<&E::Target>`.
///
/// Leaves the original `Fallible` in-place, creating a new one with a reference
/// to the original one, additionally coercing the contents via [`Deref`].
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail: Fallible<String> = Fail("something went wrong".to_owned());
/// assert_eq!(fail.as_deref(), Fail("something went wrong"))
/// ```
#[inline]
pub const fn as_deref(&self) -> Fallible<&<E as Deref>::Target>
where
E: ~const Deref,
{
match self {
Success => Success,
Fail(e) => Fail(e.deref()),
}
}
/// Converts from `Fallible<E>` (or `&mut Fallible<E>`) to `Fallible<&mut E::Target>`
///
/// Leaves the original `Fallible` in-place, creating a new one containing a mutable reference to
/// the inner type's [`Deref::Target`] type.
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let mut fail = Fail("uh oh!".to_owned());
///
/// fail.as_deref_mut().map(|err| {
/// err.make_ascii_uppercase();
/// err
/// });
///
/// assert_eq!(fail, Fail("UH OH!".to_owned()));
/// ```
///
#[inline]
pub const fn as_deref_mut(&mut self) -> Fallible<&mut <E as Deref>::Target>
where
E: ~const DerefMut,
{
match self {
Success => Success,
Fail(e) => Fail(e.deref_mut()),
}
}
/// Converts from `&mut Fallible<E>` to `Fallible<&mut E>`
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let mut fail = Fail("uh oh!".to_owned());
/// match fail.as_mut() {
/// Fail(err) => err.make_ascii_uppercase(),
/// Success => {}
/// }
///
/// assert_eq!(fail, Fail("UH OH!".to_owned()))
/// ```
#[inline]
pub const fn as_mut(&mut self) -> Fallible<&mut E> {
match self {
Success => Success,
Fail(ref mut e) => Fail(e),
}
}
/// Converts from `&Fallible<E>` to `Fallible<&E>`
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail = Fail("uh oh!");
/// let err_length = fail.as_ref().map(|err| err.len());
///
/// assert_eq!(err_length, Fail(6));
///
/// ```
#[inline]
pub const fn as_ref(&self) -> Fallible<&E> {
match self {
Success => Success,
Fail(ref e) => Fail(e),
}
}
/// Returns true if the value is a `Success`, otherwise false.
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// assert_eq!(Fail("some error").is_successful(), false);
/// assert_eq!(Success::<&str>.is_successful(), true)
/// ```
#[inline]
pub const fn is_successful(&self) -> bool {
matches!(self, Success)
}
/// Returns true if the value is a `Fail`, otherwise false.
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// assert_eq!(Fail("some error").is_fail(), true);
/// assert_eq!(Success::<&str>.is_fail(), false)
/// ```
#[inline]
pub const fn is_fail(&self) -> bool {
matches!(self, Fail(_))
}
/// Unwrap the contained error or panics if no error has occurred.
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let fail = Fail(70);
/// assert_eq!(fail.unwrap_fail(), 70);
/// ```
///
/// ```rust,should_panic
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let fail: Fallible<u32> = Success;
/// assert_eq!(fail.unwrap_fail(), 70);
/// ```
#[inline]
pub fn unwrap_fail(self) -> E {
match self {
Success => panic!("called `Fallible::unwrap_fail()` on a `Fallible::Success` value"),
Fail(err) => err,
}
}
/// Returns `true` if the Fallible is a `Fail` value containing an error
/// equivalent to `f`
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail = Fail("hello".to_owned());
/// assert!(fail.contains(&"hello"))
/// ```
#[inline]
pub const fn contains<U: ~const PartialEq<E>>(&self, x: &U) -> bool {
match self {
Success => false,
Fail(e) => x.eq(e),
}
}
/// Maps an `Fallible<E>` to `Fallible<U>` by applying a function
/// to the contained error.
///
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail = Fail("hello");
/// let fail = fail.map(|err| format!("{err} world!"));
///
/// assert_eq!(fail, Fail("hello world!".to_owned()));
/// ```
#[inline]
pub const fn map<F, U>(self, op: F) -> Fallible<U>
where
F: ~const FnOnce(E) -> U,
F: ~const Destruct,
E: ~const Destruct,
{
match self {
Success => Success,
Fail(e) => Fail(op(e)),
}
}
/// Transforms the `Fallible<E>` into a `Result<(), E>`, where `Fail(e)`
/// becomes `Err(e)` and `Success` becomes `Ok(())`
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail = Fail("error").result();
///
/// assert_eq!(fail, Err("error"));
/// ```
#[inline]
pub const fn result(self) -> Result<(), E>
where
E: ~const Destruct,
{
match self {
Success => Ok(()),
Fail(e) => Err(e),
}
}
/// Borrows the `Fallible<E>` as an `Option<E>`, yielding none
/// if no error occurred.
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail = Fail("error occurred");
/// let maybe_error = fail.err();
///
/// assert_eq!(maybe_error, Some(&"error occurred"));
/// ```
#[inline]
pub const fn err(&self) -> Option<&E> {
match self {
Success => None,
Fail(err) => Some(err),
}
}
/// Constructs a `Result<T, E>` from self.
/// ```rust
/// # use fallible_option::Fallible::{self, Fail};
/// let fail: Result<u32, &str> = Fail("some error").err_or(10);
///
/// assert_eq!(fail, Err("some error"));
/// ```
/// `Fail(e)` becomes `Err(e)` and `Success` becomes `Ok(value)`
#[inline]
pub const fn err_or<T>(self, value: T) -> Result<T, E>
where
E: ~const Destruct,
T: ~const Destruct,
{
match self {
Success => Ok(value),
Fail(e) => Err(e),
}
}
/// Replaces the contained error (if any) with None,
/// and returns an `Option<E>` with the contained error,
/// if the outcome was `Fail`.
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let mut fail = Fail("something went wrong");
///
/// let err = fail.take();
///
/// assert_eq!(fail, Success);
/// assert_eq!(err, Some("something went wrong"));
/// ```
#[inline]
pub const fn take(&mut self) -> Option<E>
where
E: ~const Destruct,
{
match mem::replace(self, Success) {
Success => None,
Fail(e) => Some(e),
}
}
}
impl<E> Fallible<&E>
where
E: ~const Clone,
{
/// Maps a `Fallible<&E>` to a [`Fallible<E>`] by cloning the contents of the
/// error.
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
pub const fn cloned(self) -> Fallible<E> {
match self {
Success => Success,
Fail(e) => Fail(e.clone()),
}
}
/// Maps an `Fallible<&E>` to an `Fallible<E>` by copying the contents of the
/// error.
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
pub const fn copied(self) -> Fallible<E>
where
E: Copy,
{
match self {
Success => Success,
Fail(&e) => Fail(e),
}
}
}
impl<E> Fallible<&mut E>
where
E: ~const Clone,
{
/// Maps an `Fallible<&E>` to an `Fallible<E>` by cloning the contents of the
/// error.
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
pub const fn cloned(self) -> Fallible<E> {
match self {
Success => Success,
Fail(e) => Fail(e.clone()),
}
}
/// Maps an `Fallible<&E>` to an `Fallible<E>` by copying the contents of the
/// error.
#[inline]
#[must_use = "`self` will be dropped if the result is not used"]
pub const fn copied(self) -> Fallible<E>
where
E: Copy,
{
match self {
Success => Success,
Fail(&mut e) => Fail(e),
}
}
}
/// The following functions are only available if the generic parameter `E` implements [`Debug`]
impl<E> Fallible<E>
where
E: Debug,
{
/// Returns a unit value if the `Fallible` is not `Fail`.
///
/// # Panics
/// Panics if the value is a `Fail`, with a panic message including
/// the content of the `Fail`.
/// ```rust
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let success: Fallible<()> = Success;
/// success.unwrap();
/// ```
///
/// ```rust,should_panic
/// # use fallible_option::Fallible::{self, Fail, Success};
/// let fail = Fail("hello world");
/// fail.unwrap();
/// ```
#[inline]
pub fn unwrap(self) {
match self {
Success => (),
Fail(e) => {
panic!("called `Fallible::unwrap()` on a `Fallible::Fail` value: {e:?}")
}
}
}
}
impl<E> Fallible<Fallible<E>> {
/// Flattens a `Fallible<Fallible<E>>` into a `Fallible<E>`
#[inline]
pub const fn flatten(self) -> Fallible<E>
where
E: ~const Destruct,
{
match self {
Success => Success,
Fail(inner) => inner,
}
}
}
impl<E> const From<E> for Fallible<E> {
#[inline]
fn from(value: E) -> Self {
Fail(value)
}
}
impl<T, E> const From<Result<T, E>> for Fallible<E>
where
E: ~const Destruct,
T: ~const Destruct,
{
#[inline]
fn from(value: Result<T, E>) -> Self {
match value {
Ok(_) => Success,
Err(e) => Fail(e),
}
}
}
impl<'a, E> const From<&'a Fallible<E>> for Fallible<&'a E> {
#[inline]
fn from(value: &'a Fallible<E>) -> Self {
value.as_ref()
}
}
impl<'a, E> const From<&'a mut Fallible<E>> for Fallible<&'a mut E> {
#[inline]
fn from(value: &'a mut Fallible<E>) -> Self {
value.as_mut()
}
}
impl<E> const Default for Fallible<E> {
#[inline]
fn default() -> Self {
Success
}
}
impl<E> const Clone for Fallible<E>
where
E: ~const Clone + ~const Destruct,
{
#[inline]
fn clone(&self) -> Self {
match self {
Fail(x) => Fail(x.clone()),
Success => Success,
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
match (self, source) {
(Fail(to), Fail(from)) => to.clone_from(from),
(to, from) => *to = from.clone(),
}
}
}
impl<E> Try for Fallible<E> {
type Output = ();
type Residual = Fallible<E>;
#[inline]
fn from_output(_: Self::Output) -> Self {
Success
}
#[inline]
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
Success => ControlFlow::Continue(()),
Fail(e) => ControlFlow::Break(Fail(e)),
}
}
}
impl<E, U> FromResidual<Fallible<U>> for Fallible<E>
where
E: From<U>,
{
#[inline]
fn from_residual(residual: Fallible<U>) -> Self {
match residual {
Success => Success,
Fail(u) => Fail(u.into()),
}
}
}
impl<T, E, U> FromResidual<Fallible<U>> for Result<T, E>
where
E: From<U>,
{
#[inline]
fn from_residual(residual: Fallible<U>) -> Self {
match residual {
Success => unreachable!(),
Fail(e) => Err(e.into()),
}
}
}
impl<E, U> FromResidual<Result<(), U>> for Fallible<E>
where
E: From<U>,
{
#[inline]
fn from_residual(residual: Result<(), U>) -> Self {
match residual {
Ok(()) => Success,
Err(e) => Fail(e.into()),
}
}
}
impl<E, U> FromResidual<Result<Infallible, U>> for Fallible<E>
where
E: From<U>,
{
#[inline]
fn from_residual(residual: Result<Infallible, U>) -> Self {
match residual {
Ok(_) => Success,
Err(e) => Fail(e.into()),
}
}
}
#[cfg(test)]
mod tests {
use crate::Fallible::{self, Fail, Success};
#[derive(Debug, PartialEq)]
struct InnerError(pub u8);
#[derive(Debug, PartialEq)]
enum OuterError {
Inner(InnerError),
}
impl From<InnerError> for OuterError {
fn from(value: InnerError) -> Self {
OuterError::Inner(value)
}
}
#[test]
fn fallible_residual_conversion() {
fn inner_error() -> Fallible<InnerError> {
Fail(InnerError(1))
}
fn outer_error() -> Fallible<OuterError> {
inner_error()?;
Success
}
assert_eq!(
outer_error().unwrap_fail(),
OuterError::Inner(InnerError(1))
);
}
#[test]
fn result_residual_conversion() {
fn inner_error() -> Fallible<InnerError> {
Fail(InnerError(1))
}
fn outer_error() -> Result<(), OuterError> {
inner_error()?;
Ok(())
}
assert_eq!(outer_error(), Err(OuterError::Inner(InnerError(1))));
}
}