exponential_integral/chebyshev.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
//! Chebyshev series/polynomial approximation.
use {
crate::Approx,
sigma_types::{Finite, Zero as _, usize::LessThan},
};
#[cfg(feature = "error")]
use {crate::constants, sigma_types::NonNegative};
/// Chebyshev series/polynomial approximation.
/// # Original C code
/// ```c
/// struct cheb_series_struct {
/// double * c; /* coefficients */
/// int order; /* order of expansion */
/// double a; /* lower interval point */
/// double b; /* upper interval point */
/// int order_sp; /* effective single precision order */
/// };
/// typedef struct cheb_series_struct cheb_series;
///
/// // ...
///
/// static inline int
/// cheb_eval_e(const cheb_series * cs,
/// const double x,
/// gsl_sf_result * result)
/// {
/// int j;
/// double d = 0.0;
/// double dd = 0.0;
///
/// double y = (2.0*x - cs->a - cs->b) / (cs->b - cs->a);
/// double two_x = 2.0 * y;
///
/// double e = 0.0;
///
/// for(j = cs->order; j>=1; j--) {
/// double temp = d;
/// d = two_x*d - dd + cs->c[j];
/// e += fabs(two_x*temp) + fabs(dd) + fabs(cs->c[j]);
/// dd = temp;
/// }
///
/// {
/// double temp = d;
/// d = y*d - dd + 0.5 * cs->c[0];
/// e += fabs(y*temp) + fabs(dd) + 0.5 * fabs(cs->c[0]);
/// }
///
/// result->val = d;
/// result->err = GSL_DBL_EPSILON * e + fabs(cs->c[cs->order]);
///
/// return GSL_SUCCESS;
/// }
/// ```
#[inline]
#[must_use]
pub fn eval<const N_COEFFICIENTS: usize>(
coefficients: &[Finite<f64>; N_COEFFICIENTS],
x: Finite<f64>,
#[cfg(feature = "precision")] order: LessThan<{ N_COEFFICIENTS }>,
) -> Approx {
#![expect(
clippy::arithmetic_side_effects,
reason = "property-based testing ensures this never happens"
)]
debug_assert!(
N_COEFFICIENTS > 0,
"Chebyshev series without any coefficients",
);
let two_x: Finite<f64> = Finite::new(2_f64) * x;
#[cfg(feature = "error")]
let mut e = NonNegative::<Finite<f64>>::ZERO;
let mut d = Finite::<f64>::ZERO;
let mut dd = Finite::<f64>::ZERO;
{
let mut j: LessThan<{ N_COEFFICIENTS }> = {
#[cfg(feature = "precision")]
{
order
}
#[cfg(not(feature = "precision"))]
{
LessThan::new(const { N_COEFFICIENTS - 1 })
}
};
while *j >= 1 {
// SAFETY:
// See the `debug_assert` above.
let coefficient = *unsafe { coefficients.get_unchecked(*j) };
let tmp = d;
d = ((two_x * d) - dd) + coefficient;
#[cfg(feature = "error")]
{
e += NonNegative::<Finite<f64>>::new((two_x * tmp).map(f64::abs))
+ NonNegative::<Finite<f64>>::new(dd.map(f64::abs))
+ NonNegative::<Finite<f64>>::new(coefficient.map(f64::abs));
}
dd = tmp;
j.map_mut(|u| *u -= 1);
}
}
{
#[cfg(feature = "error")]
let tmp = d;
// SAFETY:
// Sigma types ensure validity.
let coefficient = *unsafe { coefficients.get_unchecked(0) };
let half_coefficient = coefficient.map(|c| 0.5_f64 * c);
d = x * d - dd + half_coefficient;
#[cfg(feature = "error")]
{
e += NonNegative::<Finite<f64>>::new((x * tmp).map(f64::abs))
+ NonNegative::<Finite<f64>>::new(dd.map(f64::abs))
+ NonNegative::<Finite<f64>>::new(half_coefficient.map(f64::abs));
}
}
#[cfg(feature = "error")]
// SAFETY:
// See `debug_assert`s above.
let last_coefficient = *unsafe { coefficients.get_unchecked(const { N_COEFFICIENTS - 1 }) };
Approx {
value: d,
#[cfg(feature = "error")]
error: NonNegative::new(Finite::new(constants::GSL_DBL_EPSILON)) * e
+ NonNegative::new(last_coefficient.map(f64::abs)),
}
}
/// Compile-time-compatible minimum of two large unsigned integers.
#[inline]
#[cfg_attr(not(test), expect(dead_code, reason = "TODO: REMOVE"))]
#[cfg_attr(test, expect(clippy::single_call_fn, reason = "TODO: REMOVE"))]
pub(crate) const fn min(a: usize, b: usize) -> usize {
if a.checked_sub(b).is_some() { b } else { a }
}