1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//! VM Runtime
use bigint::{H256, M256, U256, Gas, Address};
use super::commit::{AccountState, BlockhashState};
use super::errors::{RequireError, MachineError, CommitError, EvalError, PCError};
use super::{Stack, Context, HeaderParams, Patch, PC, Memory, AccountCommitment, Log};

use self::check::{check_opcode, extra_check_opcode};
use self::run::run_opcode;
use self::cost::{gas_refund, gas_stipend, gas_cost, memory_cost, memory_gas};

mod cost;
mod run;
mod check;
mod util;
mod lifecycle;
mod precompiled;

/// A VM state without PC.
pub struct State<M> {
    /// Memory of this runtime.
    pub memory: M,
    /// Stack of this runtime.
    pub stack: Stack,

    /// Context.
    pub context: Context,
    /// Block header.
    pub block: HeaderParams,
    /// Patch that is used by this runtime.
    pub patch: &'static Patch,

    /// The current out value.
    pub out: Vec<u8>,

    /// The current memory cost. Note that this is different from
    /// memory gas.
    pub memory_cost: Gas,
    /// Used gas excluding memory gas.
    pub used_gas: Gas,
    /// Refunded gas.
    pub refunded_gas: Gas,

    /// The current account commitment states.
    pub account_state: AccountState,
    /// The current blockhash commitment states.
    pub blockhash_state: BlockhashState,
    /// Logs appended.
    pub logs: Vec<Log>,
    /// Removed accounts using the SUICIDE opcode.
    pub removed: Vec<Address>,

    /// Depth of this runtime.
    pub depth: usize,
}

impl<M> State<M> {
    /// Memory gas, part of total used gas.
    pub fn memory_gas(&self) -> Gas {
        memory_gas(self.memory_cost)
    }

    /// Available gas at this moment.
    pub fn available_gas(&self) -> Gas {
        self.context.gas_limit - self.memory_gas() - self.used_gas
    }

    /// Total used gas including the memory gas.
    pub fn total_used_gas(&self) -> Gas {
        self.memory_gas() + self.used_gas
    }
}

/// A VM state with PC.
pub struct Machine<M> {
    state: State<M>,
    pc: PC,
    status: MachineStatus,
}

#[derive(Debug, Clone)]
/// Represents the current runtime status.
pub enum MachineStatus {
    /// This runtime is actively running or has just been started.
    Running,
    /// This runtime has exited successfully. Calling `step` on this
    /// runtime again would panic.
    ExitedOk,
    /// This runtime has exited with errors. Calling `step` on this
    /// runtime again would panic.
    ExitedErr(MachineError),
    /// This runtime requires execution of a sub runtime, which is a
    /// ContractCreation instruction.
    InvokeCreate(Context),
    /// This runtime requires execution of a sub runtime, which is a
    /// MessageCall instruction.
    InvokeCall(Context, (U256, U256)),
}

#[derive(Debug, Clone)]
/// Used for `check` for additional checks related to the runtime.
pub enum ControlCheck {
    Jump(M256),
}

#[derive(Debug, Clone)]
/// Used for `step` for additional operations related to the runtime.
pub enum Control {
    Stop,
    Jump(M256),
    InvokeCreate(Context),
    InvokeCall(Context, (U256, U256)),
}

impl<M: Memory + Default> Machine<M> {
    /// Create a new runtime.
    pub fn new(context: Context, block: HeaderParams, patch: &'static Patch, depth: usize) -> Self {
        Self::with_states(context, block, patch, depth,
                          AccountState::default(), BlockhashState::default())
    }

    /// Create a new runtime with the given states.
    pub fn with_states(context: Context, block: HeaderParams, patch: &'static Patch,
                       depth: usize, account_state: AccountState,
                       blockhash_state: BlockhashState) -> Self {
        Machine {
            pc: PC::new(context.code.as_slice(), patch),
            status: MachineStatus::Running,
            state: State {
                memory: M::default(),
                stack: Stack::default(),

                context,
                block,
                patch,

                out: Vec::new(),

                memory_cost: Gas::zero(),
                used_gas: Gas::zero(),
                refunded_gas: Gas::zero(),

                account_state,
                blockhash_state,
                logs: Vec::new(),
                removed: Vec::new(),

                depth,
            },
        }
    }

    /// Derive this runtime to create a sub runtime. This will not
    /// modify the current runtime, and it will have a chance to
    /// review whether it wants to accept the result of this sub
    /// runtime afterwards.
    pub fn derive(&self, context: Context) -> Self {
        Machine {
            pc: PC::new(context.code.as_slice(), self.state.patch),
            status: MachineStatus::Running,
            state: State {
                memory: M::default(),
                stack: Stack::default(),

                context: context,
                block: self.state.block.clone(),
                patch: self.state.patch.clone(),

                out: Vec::new(),

                memory_cost: Gas::zero(),
                used_gas: Gas::zero(),
                refunded_gas: Gas::zero(),

                account_state: self.state.account_state.clone(),
                blockhash_state: self.state.blockhash_state.clone(),
                logs: self.state.logs.clone(),
                removed: self.state.removed.clone(),

                depth: self.state.depth + 1,
            },
        }
    }


    /// Commit a new account into this runtime.
    pub fn commit_account(&mut self, commitment: AccountCommitment) -> Result<(), CommitError> {
        self.state.account_state.commit(commitment)
    }

    /// Commit a new blockhash into this runtime.
    pub fn commit_blockhash(&mut self, number: U256, hash: H256) -> Result<(), CommitError> {
        self.state.blockhash_state.commit(number, hash)
    }

    /// Check the next instruction about whether it will return
    /// errors.
    pub fn check(&self) -> Result<(), EvalError> {
        let instruction = self.pc.peek()?;
        check_opcode(instruction, &self.state).and_then(|v| {
            match v {
                None => Ok(()),
                Some(ControlCheck::Jump(dest)) => {
                    if dest <= M256::from(usize::max_value()) && self.pc.is_valid(dest.as_usize()) {
                        Ok(())
                    } else {
                        Err(EvalError::Machine(MachineError::PC(PCError::BadJumpDest)))
                    }
                }
            }
        })
    }

    /// Step an instruction in the PC. The eval result is refected by
    /// the runtime status, and it will only return an error if
    /// there're accounts or blockhashes to be committed to this
    /// runtime for it to run. In that case, the state of the current
    /// runtime will not be affected.
    pub fn step(&mut self) -> Result<(), RequireError> {
        match &self.status {
            &MachineStatus::Running => (),
            _ => panic!(),
        }

        if self.step_precompiled() {
            return Ok(());
        }

        if self.pc.is_end() {
            self.status = MachineStatus::ExitedOk;
            return Ok(());
        }

        match self.check() {
            Ok(()) => (),
            Err(EvalError::Machine(error)) => {
                self.status = MachineStatus::ExitedErr(error);
                return Ok(());
            },
            Err(EvalError::Require(error)) => {
                return Err(error);
            },
        };

        let instruction = self.pc.peek().unwrap();
        let position = self.pc.position();
        let memory_cost = memory_cost(instruction, &self.state);
        let memory_gas = memory_gas(memory_cost);
        let gas_cost = gas_cost(instruction, &self.state);
        let gas_stipend = gas_stipend(instruction, &self.state);
        let gas_refund = gas_refund(instruction, &self.state);

        let all_gas_cost = memory_gas + self.state.used_gas + gas_cost;
        if self.state.context.gas_limit < all_gas_cost {
            self.status = MachineStatus::ExitedErr(MachineError::EmptyGas);
            return Ok(());
        }

        let after_gas = self.state.context.gas_limit - all_gas_cost;

        match extra_check_opcode(instruction, &self.state, gas_stipend, after_gas) {
            Ok(()) => (),
            Err(EvalError::Machine(error)) => {
                self.status = MachineStatus::ExitedErr(error);
                return Ok(());
            },
            Err(EvalError::Require(error)) => {
                return Err(error);
            },
        }

        let instruction = self.pc.read().unwrap();
        let result = run_opcode((instruction, position),
                                &mut self.state, gas_stipend, after_gas);

        self.state.used_gas = self.state.used_gas + gas_cost - gas_stipend;
        self.state.memory_cost = memory_cost;
        self.state.refunded_gas = self.state.refunded_gas + gas_refund;

        match result {
            None => Ok(()),
            Some(Control::Jump(dest)) => {
                self.pc.jump(dest.as_usize()).unwrap();
                Ok(())
            },
            Some(Control::InvokeCall(context, (from, len))) => {
                self.status = MachineStatus::InvokeCall(context, (from, len));
                Ok(())
            },
            Some(Control::InvokeCreate(context)) => {
                self.status = MachineStatus::InvokeCreate(context);
                Ok(())
            },
            Some(Control::Stop) => {
                self.status = MachineStatus::ExitedOk;
                Ok(())
            },
        }
    }

    /// Get the runtime state.
    pub fn state(&self) -> &State<M> {
        &self.state
    }

    /// Get the current runtime status.
    pub fn status(&self) -> MachineStatus {
        self.status.clone()
    }
}