1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
//! Cell tree implementation.
use std::ops::{BitOr, BitOrAssign};
use crate::error::Error;
use crate::util::{unlikely, DisplayHash};
pub use self::builder::{CellBuilder, CellRefsBuilder, Store};
pub use self::cell_impl::StaticCell;
pub use self::finalizer::{CellParts, DefaultFinalizer, Finalizer};
pub use self::slice::{CellSlice, Load};
pub use self::usage_tree::{UsageTree, UsageTreeMode, UsageTreeWithSubtrees};
#[cfg(not(feature = "sync"))]
pub use self::cell_impl::rc::Cell;
#[cfg(feature = "sync")]
pub use self::cell_impl::sync::Cell;
pub use everscale_types_proc::{Load, Store};
/// Generic cell implementation.
mod cell_impl;
/// Cell finalization primitives.
mod finalizer;
/// Cell view utils.
mod slice;
/// Cell creation utils.
mod builder;
mod usage_tree;
#[cfg(feature = "sync")]
#[doc(hidden)]
mod __checks {
use super::*;
assert_impl_all!(Cell: Send);
assert_impl_all!(CellSlice: Send);
assert_impl_all!(CellBuilder: Send);
}
/// Cell implementation family.
pub trait CellFamily: Sized {
/// Creates an empty cell.
///
/// NOTE: in most cases empty cell is ZST.
fn empty_cell() -> Cell;
/// Returns a static reference to the empty cell
fn empty_cell_ref() -> &'static DynCell;
/// Returns a static reference to the cell with all zeros.
fn all_zeros_ref() -> &'static DynCell;
/// Returns a static reference to the cell with all ones.
fn all_ones_ref() -> &'static DynCell;
/// Creates a virtualized cell from the specified cell.
fn virtualize(cell: Cell) -> Cell;
}
/// Dyn trait type alias.
#[cfg(not(feature = "sync"))]
pub type DynCell = dyn CellImpl;
/// Dyn trait type alias.
#[cfg(feature = "sync")]
pub type DynCell = dyn CellImpl + Send + Sync;
/// Represents the interface of a well-formed cell.
///
/// Since all basic operations are implements via dynamic dispatch,
/// all high-level helper methods are implemented for `dyn Cell`.
pub trait CellImpl {
/// Returns cell descriptor.
///
/// # See also
///
/// Cell descriptor contains some tightly packed info about the cell.
/// If you want convenient methods to access it use:
/// [`cell_type`], [`level_mask`], [`reference_count`], [`is_exotic`]
///
/// [`cell_type`]: CellDescriptor::cell_type
/// [`level_mask`]: CellDescriptor::level_mask
/// [`reference_count`]: CellDescriptor::reference_count
/// [`is_exotic`]: CellDescriptor::is_exotic
fn descriptor(&self) -> CellDescriptor;
/// Returns the raw data of this cell.
fn data(&self) -> &[u8];
/// Returns the data size of this cell in bits.
fn bit_len(&self) -> u16;
/// Returns a reference to the Nth child cell.
fn reference(&self, index: u8) -> Option<&DynCell>;
/// Returns the Nth child cell.
fn reference_cloned(&self, index: u8) -> Option<Cell>;
/// Returns this cell as a virtualized cell, so that all hashes
/// and depths will have an offset.
fn virtualize(&self) -> &DynCell;
/// Returns cell hash for the specified level.
///
/// Cell representation hash is the hash at the maximum level ([`LevelMask::MAX_LEVEL`]).
/// Use `repr_hash` as a simple alias for this.
fn hash(&self, level: u8) -> &CellHash;
/// Returns cell depth for the specified level.
fn depth(&self, level: u8) -> u16;
/// Consumes the first child during the deep drop.
fn take_first_child(&mut self) -> Option<Cell>;
/// Replaces the first child with the provided parent during the deep drop.
///
/// Returns `Ok(child)` if child was successfully replaced,
/// `Err(parent)` otherwise.
fn replace_first_child(&mut self, parent: Cell) -> Result<Cell, Cell>;
/// Consumes the next child (except first) during the deep drop.
fn take_next_child(&mut self) -> Option<Cell>;
/// Returns the sum of all bits and cells of all elements in the cell tree
/// (including this cell).
#[cfg(feature = "stats")]
fn stats(&self) -> CellTreeStats;
}
impl DynCell {
/// Computes cell type from descriptor bytes.
#[inline]
pub fn cell_type(&self) -> CellType {
self.descriptor().cell_type()
}
/// Computes the cell level from the level mask.
#[inline]
pub fn level(&self) -> u8 {
self.descriptor().level_mask().level()
}
/// Computes the level mask from the descriptor bytes.
#[inline]
pub fn level_mask(&self) -> LevelMask {
self.descriptor().level_mask()
}
/// Computes the number of child cells from descriptor bytes.
#[inline]
pub fn reference_count(&self) -> u8 {
self.descriptor().reference_count()
}
/// Tries to load the specified child cell as slice.
/// Returns an error if the loaded cell is absent or is pruned.
pub fn get_reference_as_slice(&self, index: u8) -> Result<CellSlice<'_>, Error> {
match self.reference(index) {
Some(cell) => {
// Handle pruned branch access
if unlikely(cell.descriptor().is_pruned_branch()) {
Err(Error::PrunedBranchAccess)
} else {
Ok(CellSlice::new(cell))
}
}
None => Err(Error::CellUnderflow),
}
}
/// Returns whether the cell is not [`Ordinary`].
///
/// [`Ordinary`]: CellType::Ordinary
#[inline]
pub fn is_exotic(&self) -> bool {
self.descriptor().is_exotic()
}
/// Returns a representation hash of the cell.
#[inline]
pub fn repr_hash(&self) -> &CellHash {
self.hash(LevelMask::MAX_LEVEL)
}
/// Returns a representation depth of the cell.
#[inline]
pub fn repr_depth(&self) -> u16 {
self.depth(LevelMask::MAX_LEVEL)
}
/// Returns true if the cell is empty (no bits, no refs).
pub fn is_empty(&self) -> bool {
self.hash(LevelMask::MAX_LEVEL) == EMPTY_CELL_HASH
}
/// Creates an iterator through child nodes.
#[inline]
pub fn references(&self) -> RefsIter<'_> {
RefsIter {
cell: self,
max: self.reference_count(),
index: 0,
}
}
/// Returns this cell as a cell slice.
#[inline]
pub fn as_slice(&'_ self) -> CellSlice<'_> {
CellSlice::new(self)
}
/// Returns an object that implements [`Debug`] for printing only
/// the root cell of the cell tree.
///
/// [`Debug`]: std::fmt::Debug
#[inline]
pub fn debug_root(&'_ self) -> DebugCell<'_> {
DebugCell(self)
}
/// Returns an object that implements [`Display`] for printing only
/// the root cell of the cell tree.
///
/// [`Display`]: std::fmt::Display
#[inline]
pub fn display_root(&'_ self) -> DisplayCellRoot<'_> {
DisplayCellRoot {
cell: self,
level: 0,
}
}
/// Returns an object that implements [`Display`] for printing all
/// cells in the cell tree.
///
/// [`Display`]: std::fmt::Display
#[inline]
pub fn display_tree(&'_ self) -> DisplayCellTree<'_> {
DisplayCellTree(self)
}
/// Converts this cell into a slice and tries to load the specified type from it.
///
/// NOTE: parsing `Cell` will load the first reference!
#[inline]
pub fn parse<'a, T: Load<'a>>(&'a self) -> Result<T, Error> {
T::load_from(&mut self.as_slice())
}
}
impl std::fmt::Debug for DynCell {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
crate::util::debug_struct_field2_finish(
f,
"Cell",
"ty",
&self.cell_type(),
"hash",
&DisplayHash(self.repr_hash()),
)
}
}
impl Eq for DynCell {}
impl PartialEq<DynCell> for DynCell {
#[inline]
fn eq(&self, other: &DynCell) -> bool {
self.repr_hash() == other.repr_hash()
}
}
/// An iterator through child nodes.
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct RefsIter<'a> {
cell: &'a DynCell,
max: u8,
index: u8,
}
impl<'a> RefsIter<'a> {
/// Returns a cell by children of which we are iterating.
#[inline]
pub fn cell(&self) -> &'a DynCell {
self.cell
}
/// Returns a reference to the next() value without advancing the iterator.
#[inline]
pub fn peek(&self) -> Option<&'a DynCell> {
if self.index >= self.max {
None
} else {
self.cell.reference(self.index)
}
}
/// Returns a cloned reference to the next() value without advancing the iterator.
#[inline]
pub fn peek_cloned(&self) -> Option<Cell> {
if self.index >= self.max {
None
} else {
self.cell.reference_cloned(self.index)
}
}
/// Returns a reference to the next_back() value without advancing the iterator.
#[inline]
pub fn peek_prev(&self) -> Option<&'a DynCell> {
if self.index > 0 {
self.cell.reference(self.index - 1)
} else {
None
}
}
/// Returns a cloned reference to the next_back() value without advancing the iterator.
#[inline]
pub fn peek_prev_cloned(&self) -> Option<Cell> {
if self.index > 0 {
self.cell.reference_cloned(self.index - 1)
} else {
None
}
}
/// Creates an iterator through child nodes which produces cloned references.
#[inline]
pub fn cloned(self) -> ClonedRefsIter<'a> {
ClonedRefsIter { inner: self }
}
}
impl Clone for RefsIter<'_> {
#[inline]
fn clone(&self) -> Self {
Self {
cell: self.cell,
max: self.max,
index: self.index,
}
}
}
impl<'a> Iterator for RefsIter<'a> {
type Item = &'a DynCell;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.index >= self.max {
None
} else {
let child = self.cell.reference(self.index);
self.index += 1;
child
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.max.saturating_sub(self.index) as usize;
(remaining, Some(remaining))
}
}
impl<'a> DoubleEndedIterator for RefsIter<'a> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
if self.max > self.index {
self.max -= 1;
self.cell.reference(self.max)
} else {
None
}
}
}
impl ExactSizeIterator for RefsIter<'_> {
#[inline]
fn len(&self) -> usize {
self.size_hint().0
}
}
/// An iterator through child nodes which produces cloned references.
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct ClonedRefsIter<'a> {
inner: RefsIter<'a>,
}
impl<'a> ClonedRefsIter<'a> {
/// Returns a cell by children of which we are iterating.
#[inline]
pub fn cell(&self) -> &'a DynCell {
self.inner.cell
}
/// Returns a reference to the next() value without advancing the iterator.
#[inline]
pub fn peek(&self) -> Option<Cell> {
self.inner.peek_cloned()
}
/// Returns a reference to the next_back() value without advancing the iterator.
#[inline]
pub fn peek_prev(&self) -> Option<Cell> {
self.inner.peek_prev_cloned()
}
}
impl Clone for ClonedRefsIter<'_> {
#[inline]
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<'a> Iterator for ClonedRefsIter<'a> {
type Item = Cell;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.inner.index >= self.inner.max {
None
} else {
let child = self.inner.cell.reference_cloned(self.inner.index);
self.inner.index += 1;
child
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a> DoubleEndedIterator for ClonedRefsIter<'a> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
if self.inner.max > self.inner.index {
self.inner.max -= 1;
self.inner.cell.reference_cloned(self.inner.max)
} else {
None
}
}
}
impl ExactSizeIterator for ClonedRefsIter<'_> {
#[inline]
fn len(&self) -> usize {
self.size_hint().0
}
}
/// Type alias for a cell hash.
pub type CellHash = [u8; 32];
/// Hash of an empty (0 bits of data, no refs) ordinary cell.
pub static EMPTY_CELL_HASH: &CellHash = &[
0x96, 0xa2, 0x96, 0xd2, 0x24, 0xf2, 0x85, 0xc6, 0x7b, 0xee, 0x93, 0xc3, 0x0f, 0x8a, 0x30, 0x91,
0x57, 0xf0, 0xda, 0xa3, 0x5d, 0xc5, 0xb8, 0x7e, 0x41, 0x0b, 0x78, 0x63, 0x0a, 0x09, 0xcf, 0xc7,
];
/// Well-formed cell type.
#[derive(Default, Debug, Copy, Clone, Eq, PartialEq)]
pub enum CellType {
/// Cell of this type just stores data and references.
#[default]
Ordinary,
/// Exotic cell which was pruned from the original tree of cells
/// when a Merkle proof has been created.
PrunedBranch,
/// Exotic cell with a reference to the cell with a library.
LibraryReference,
/// Exotic cell with one hash and one reference.
MerkleProof,
/// Exotic cell with two hashes and two references.
MerkleUpdate,
}
impl CellType {
/// Returns whether this cell type is Merkle proof or Merkle update.
#[inline]
pub const fn is_merkle(self) -> bool {
matches!(self, Self::MerkleProof | Self::MerkleUpdate)
}
/// Returns whether the cell is not ordinary.
#[inline]
pub const fn is_exotic(self) -> bool {
!matches!(self, Self::Ordinary)
}
/// Returns whether the cell is a pruned branch
#[inline]
pub const fn is_pruned_branch(self) -> bool {
matches!(self, Self::PrunedBranch)
}
/// Encodes cell type as byte.
#[inline]
pub const fn to_byte(self) -> u8 {
match self {
CellType::Ordinary => 0xff,
CellType::PrunedBranch => 1,
CellType::LibraryReference => 2,
CellType::MerkleProof => 3,
CellType::MerkleUpdate => 4,
}
}
}
impl From<CellType> for u8 {
#[inline]
fn from(cell_type: CellType) -> u8 {
cell_type.to_byte()
}
}
/// Tightly packed info about a cell.
#[derive(Hash, Debug, Clone, Copy)]
#[repr(C)]
pub struct CellDescriptor {
/// First descriptor byte with a generic info about cell.
pub d1: u8,
/// Second descriptor byte with a packed data size.
pub d2: u8,
}
impl CellDescriptor {
/// Bit mask to store the number of references in the descriptor.
pub const REF_COUNT_MASK: u8 = 0b0000_0111;
/// Bit mask to store the `is_exotic` flag in the descriptor.
pub const IS_EXOTIC_MASK: u8 = 0b0000_1000;
/// Bit mask to store the `store_hashes` flag in the descriptor.
pub const STORE_HASHES_MASK: u8 = 0b0001_0000;
/// _de Brujn_ level presence mask in the descriptor.
pub const LEVEL_MASK: u8 = 0b1110_0000;
/// Computes d1 descriptor byte from parts
#[inline(always)]
pub const fn compute_d1(level_mask: LevelMask, is_exotic: bool, ref_count: u8) -> u8 {
(level_mask.0 << 5) | ((is_exotic as u8) << 3) | (ref_count & Self::REF_COUNT_MASK)
}
/// Computes d2 descriptor byte from cell length in bits
#[inline(always)]
pub const fn compute_d2(bit_len: u16) -> u8 {
(((bit_len >> 2) as u8) & !0b1) | ((bit_len % 8 != 0) as u8)
}
/// Constructs cell descriptor from descriptor bytes.
#[inline(always)]
pub const fn new(bytes: [u8; 2]) -> Self {
Self {
d1: bytes[0],
d2: bytes[1],
}
}
/// Computes cell type.
pub fn cell_type(self) -> CellType {
if self.d1 & Self::IS_EXOTIC_MASK == 0 {
CellType::Ordinary
} else {
match self.d1 & Self::REF_COUNT_MASK {
0 => {
// NOTE: zero mask <=> zero level
if self.d1 & Self::LEVEL_MASK == 0 {
CellType::LibraryReference
} else {
CellType::PrunedBranch
}
}
1 => CellType::MerkleProof,
_ => CellType::MerkleUpdate,
}
}
}
/// Computes child cell count.
#[inline(always)]
pub const fn reference_count(self) -> u8 {
self.d1 & Self::REF_COUNT_MASK
}
/// Computes hash count.
///
/// NOTE: Guaranteed to be in range 1..=4.
#[inline(always)]
pub const fn hash_count(self) -> u8 {
let level = self.level_mask().level();
if self.is_exotic() && self.reference_count() == 0 && level > 0 {
1 // pruned branch always has 1 hash
} else {
level + 1
}
}
/// Returns whether the cell is not [`Ordinary`].
///
/// [`Ordinary`]: CellType::Ordinary
#[inline(always)]
pub const fn is_exotic(self) -> bool {
self.d1 & Self::IS_EXOTIC_MASK != 0
}
/// Returns whether this cell is a pruned branch cell
#[inline(always)]
pub const fn is_pruned_branch(self) -> bool {
self.is_exotic() && self.reference_count() == 0 && !self.level_mask().is_empty()
}
/// Returns whether this cell type is Merkle proof or Merkle update.
#[inline(always)]
pub const fn is_merkle(self) -> bool {
self.is_exotic() && self.reference_count() != 0
}
/// Returns whether this cell refers to some external data.
#[inline(always)]
pub const fn is_absent(self) -> bool {
self.d1 == (Self::REF_COUNT_MASK | Self::IS_EXOTIC_MASK)
}
/// Returns whether this cell should store hashes in data.
#[inline(always)]
pub const fn store_hashes(self) -> bool {
self.d1 & Self::STORE_HASHES_MASK != 0
}
/// Computes level mask.
#[inline(always)]
pub const fn level_mask(self) -> LevelMask {
// SAFETY: `u8 >> 5` is always 3 bits long
unsafe { LevelMask::new_unchecked(self.d1 >> 5) }
}
/// Returns whether this cell's data is 8-bit aligned.
#[inline(always)]
pub const fn is_aligned(self) -> bool {
self.d2 & 1 == 0
}
/// Returns this cell's data length in bytes.
#[inline(always)]
pub const fn byte_len(self) -> u8 {
(self.d2 & 1) + (self.d2 >> 1)
}
}
/// _de Brujn_ level presence bitset.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct LevelMask(u8);
impl LevelMask {
/// Empty bitset.
pub const EMPTY: Self = LevelMask(0);
/// Max _de Brujn_ level.
pub const MAX_LEVEL: u8 = 3;
/// Constructs a new level mask, truncating extra bits.
#[inline(always)]
pub const fn new(mask: u8) -> Self {
Self(mask & 0b111)
}
/// Returns true if there are no levels in mask.
#[inline(always)]
pub const fn is_empty(self) -> bool {
self.0 == 0
}
/// Constructs a new level mask from the provided byte as is.
///
/// # Safety
///
/// The following must be true:
/// - Mask must be in range `0b000..=0b111`.
#[inline(always)]
pub const unsafe fn new_unchecked(mask: u8) -> Self {
Self(mask)
}
/// Creates a sufficient mask for the specified level.
///
/// NOTE: levels > 3 has no effect (mask will always be `0b111`).
#[inline(always)]
pub const fn from_level(level: u8) -> Self {
Self(match level {
0 => 0,
1 => 1,
2 => 3,
_ => 7,
})
}
/// Counts presented higher hashes.
pub const fn level(self) -> u8 {
(self.0 & 1) + ((self.0 >> 1) & 1) + ((self.0 >> 2) & 1)
}
/// Computes hash index for the specified level.
pub const fn hash_index(self, level: u8) -> u8 {
Self(self.0 & Self::from_level(level).0).level()
}
/// Creates a new mask, shifted by the offset.
#[inline(always)]
pub const fn virtualize(self, offset: u8) -> Self {
Self(self.0 >> offset)
}
/// Encodes level mask as byte.
#[inline]
pub const fn to_byte(self) -> u8 {
self.0
}
}
impl PartialEq<u8> for LevelMask {
#[inline]
fn eq(&self, other: &u8) -> bool {
self.0 == *other
}
}
impl BitOr for LevelMask {
type Output = Self;
#[inline(always)]
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl BitOrAssign for LevelMask {
#[inline(always)]
fn bitor_assign(&mut self, rhs: Self) {
self.0 |= rhs.0;
}
}
impl From<LevelMask> for u8 {
#[inline(always)]
fn from(m: LevelMask) -> u8 {
m.0
}
}
impl std::fmt::Debug for LevelMask {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("{:03b}", self.0))
}
}
/// Cell tree storage stats.
///
/// NOTE: identical cells are counted each time they occur in the tree.
#[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
#[cfg(feature = "stats")]
pub struct CellTreeStats {
/// Total number of bits in tree.
pub bit_count: u64,
/// Total number of cells in tree.
pub cell_count: u64,
}
#[cfg(feature = "stats")]
impl std::ops::Add for CellTreeStats {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
Self {
bit_count: self.bit_count.saturating_add(rhs.bit_count),
cell_count: self.cell_count.saturating_add(rhs.cell_count),
}
}
}
#[cfg(feature = "stats")]
impl std::ops::AddAssign for CellTreeStats {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.bit_count = self.bit_count.saturating_add(rhs.bit_count);
self.cell_count = self.cell_count.saturating_add(rhs.cell_count);
}
}
/// Helper struct to debug print the root cell.
#[derive(Clone, Copy)]
pub struct DebugCell<'a>(&'a DynCell);
impl std::fmt::Debug for DebugCell<'_> {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
/// Helper struct to print only the root cell in the cell tree.
#[derive(Clone, Copy)]
pub struct DisplayCellRoot<'a> {
cell: &'a DynCell,
level: usize,
}
impl std::fmt::Display for DisplayCellRoot<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// TODO: encode on stack
let data = hex::encode(self.cell.data());
let indent = self.level * 2;
if f.alternate() {
f.write_fmt(format_args!("{:indent$}{data}\n", ""))
} else {
let repr_depth = self.cell.depth(LevelMask::MAX_LEVEL);
let repr_hash = self.cell.repr_hash();
let descriptor = self.cell.descriptor();
f.write_fmt(format_args!(
"{:indent$}{:?}: {data}\n{:indent$}bits: {:>4}, refs: {}, l: {:?}, depth: {}, hash: {}\n",
"",
descriptor.cell_type(),
"",
self.cell.bit_len(),
descriptor.reference_count(),
descriptor.level_mask(),
repr_depth,
DisplayHash(repr_hash),
))
}
}
}
/// Helper struct to print all cells in the cell tree.
#[derive(Clone, Copy)]
pub struct DisplayCellTree<'a>(&'a DynCell);
impl std::fmt::Display for DisplayCellTree<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut stack = vec![(0, self.0)];
while let Some((level, cell)) = stack.pop() {
ok!(std::fmt::Display::fmt(&DisplayCellRoot { cell, level }, f));
let reference_count = cell.reference_count();
for i in (0..reference_count).rev() {
if let Some(child) = cell.reference(i) {
stack.push((level + 1, child));
}
}
}
Ok(())
}
}
/// Max cell data capacity in bits
pub const MAX_BIT_LEN: u16 = 1023;
/// Maximum number of child cells
pub const MAX_REF_COUNT: usize = 4;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn correct_level() {
const LEVEL: [u8; 8] = [0, 1, 1, 2, 1, 2, 2, 3];
for mask in 0b000..=0b111 {
assert_eq!(LevelMask(mask).level(), LEVEL[mask as usize]);
}
}
#[test]
fn correct_hash_index() {
const HASH_INDEX_TABLE: [[u8; 4]; 8] = [
// index // mask
[0, 0, 0, 0], // 000
[0, 1, 1, 1], // 001
[0, 0, 1, 1], // 010
[0, 1, 2, 2], // 011
[0, 0, 0, 1], // 100
[0, 1, 1, 2], // 101
[0, 0, 1, 2], // 110
[0, 1, 2, 3], // 111
];
for mask in 0b000..=0b111 {
let mask = LevelMask(mask);
for i in 0..=3 {
let hash_index = mask.hash_index(i);
assert_eq!(hash_index, HASH_INDEX_TABLE[mask.0 as usize][i as usize]);
}
}
}
}