1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//! Dictionary implementation.

use crate::cell::*;
use crate::util::unlikely;
use crate::Error;

pub use aug::*;
pub use raw::*;
pub use typed::*;

mod aug;
mod raw;
mod typed;

/// Type which can be used as a dictionary key.
pub trait DictKey: Sized {
    /// Length in bits for a dictionary key.
    const BITS: u16;

    /// Creates a key from a raw builder data.
    fn from_raw_data(raw_data: &[u8; 128]) -> Option<Self>;
}

macro_rules! impl_dict_key {
    ($($ty:ty => $bits:literal => |$raw_data:ident| $expr:expr),*,) => {
        $(impl DictKey for $ty {
            const BITS: u16 = $bits;

            #[inline]
            fn from_raw_data($raw_data: &[u8; 128]) -> Option<Self> {
                Some($expr)
            }
        })*
    };
}

impl_dict_key! {
    bool => 1 => |d| d[0] & 0x80 != 0,
    u8 => 8 => |d| d[0],
    i8 => 8 => |d| d[0] as i8,
    u16 => 16 => |d| u16::from_be_bytes([d[0], d[1]]),
    i16 => 16 => |d| i16::from_be_bytes([d[0], d[1]]),
    u32 => 32 => |d| u32::from_be_bytes(d[..4].try_into().unwrap()),
    i32 => 32 => |d| i32::from_be_bytes(d[..4].try_into().unwrap()),
    u64 => 64 => |d| u64::from_be_bytes(d[..8].try_into().unwrap()),
    i64 => 64 => |d| i64::from_be_bytes(d[..8].try_into().unwrap()),
    u128 => 128 => |d| u128::from_be_bytes(d[..16].try_into().unwrap()),
    i128 => 128 => |d| i128::from_be_bytes(d[..16].try_into().unwrap()),
    [u8; 16] => 128 => |d| d[..16].try_into().unwrap(),
    [u8; 20] => 160 => |d| d[..20].try_into().unwrap(),
    [u8; 32] => 256 => |d| d[..32].try_into().unwrap(),
}

/// Dictionary insertion mode.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum SetMode {
    /// Sets the value associated with the key in the dictionary.
    Set = 0b11,
    /// Sets the value associated with the key in the dictionary
    /// only if the key was already present in it.
    Replace = 0b01,
    /// Sets the value associated with key in dictionary,
    /// but only if it is not already present.
    Add = 0b10,
}

impl SetMode {
    /// Returns `true` if the new value can replace the old value for the same key.
    #[inline]
    pub const fn can_replace(self) -> bool {
        self as u8 & 0b01 != 0
    }

    /// Returns `true` if inserting a value can add a new key to the dictionary.
    #[inline]
    pub const fn can_add(self) -> bool {
        self as u8 & 0b10 != 0
    }
}

/// Inserts the value associated with key in dictionary
/// in accordance with the logic of the specified [`SetMode`].
pub fn dict_insert<C>(
    root: &Option<CellContainer<C>>,
    key: &mut CellSlice<C>,
    key_bit_len: u16,
    value: &CellSlice<C>,
    mode: SetMode,
    finalizer: &mut dyn Finalizer<C>,
) -> Result<Option<CellContainer<C>>, Error>
where
    for<'c> C: CellFamily + 'c,
{
    // Creates a leaf node
    fn make_leaf<C: CellFamily>(
        key: &CellSlice<C>,
        key_bit_len: u16,
        value: &CellSlice<C>,
        finalizer: &mut dyn Finalizer<C>,
    ) -> Result<CellContainer<C>, Error> {
        let mut builder = CellBuilder::<C>::new();
        if write_label(key, key_bit_len, &mut builder) && builder.store_slice(value) {
            match builder.build_ext(finalizer) {
                Some(data) => Ok(data),
                None => Err(Error::CellOverflow), // TODO: use errors in finalizer
            }
        } else {
            Err(Error::CellOverflow)
        }
    }

    // Splits an edge or leaf
    fn split<C: CellFamily>(
        data: &CellSlice<C>,
        prefix: &mut CellSlice<C>,
        lcp: &CellSlice<C>,
        key: &mut CellSlice<C>,
        value: &CellSlice<C>,
        finalizer: &mut dyn Finalizer<C>,
    ) -> Result<CellContainer<C>, Error> {
        // Advance the key
        let prev_key_bit_len = key.remaining_bits();
        if !key.try_advance(lcp.remaining_bits() + 1, 0) {
            return Err(Error::CellUnderflow);
        }

        // Read the next bit from the data
        prefix.try_advance(lcp.remaining_bits(), 0);
        let old_to_right = match prefix.load_bit() {
            Some(bit) => bit,
            None => return Err(Error::CellUnderflow),
        };

        // Create a leaf for the old value
        let mut left = ok!(make_leaf(prefix, key.remaining_bits(), data, finalizer));
        // Create a leaf for the right value
        let mut right = ok!(make_leaf(key, key.remaining_bits(), value, finalizer));

        // The part that starts with 1 goes to the right cell
        if old_to_right {
            std::mem::swap(&mut left, &mut right);
        }

        // Create fork
        let mut builder = CellBuilder::<C>::new();
        if write_label(lcp, prev_key_bit_len, &mut builder)
            && builder.store_reference(left)
            && builder.store_reference(right)
        {
            match builder.build_ext(finalizer) {
                Some(data) => Ok(data),
                None => Err(Error::CellOverflow), // TODO: use errors in finalizer
            }
        } else {
            Err(Error::CellOverflow)
        }
    }

    #[derive(Clone, Copy, Eq, PartialEq)]
    enum Branch {
        // Branch for a key part that starts with bit 0
        Left = 0,
        // Branch for a key part that starts with bit 1
        Right = 1,
    }

    #[derive(Clone, Copy)]
    struct Segment<'a, C: CellFamily> {
        data: CellSlice<'a, C>,
        next_branch: Branch,
    }

    if key.remaining_bits() != key_bit_len {
        return Err(Error::CellUnderflow);
    }

    let data = match root.as_ref() {
        Some(data) => data.as_ref(),
        None if mode.can_add() => {
            let data = ok!(make_leaf(key, key_bit_len, value, finalizer));
            return Ok(Some(data));
        }
        None => return Ok(None),
    };
    // Handle pruned branch access
    if unlikely(data.descriptor().is_pruned_branch()) {
        return Err(Error::PrunedBranchAccess);
    }
    let mut data = data.as_slice();

    let mut stack = Vec::<Segment<C>>::new();

    let mut leaf = loop {
        let mut remaining_data = data;

        // Read the next part of the key from the current data
        let prefix = &mut match read_label(&mut remaining_data, key.remaining_bits()) {
            Some(prefix) => prefix,
            None => return Err(Error::CellUnderflow),
        };

        // Match the prefix with the key
        let lcp = key.longest_common_data_prefix(prefix);
        match lcp.remaining_bits().cmp(&key.remaining_bits()) {
            // If all bits match, an existing value was found
            std::cmp::Ordering::Equal => {
                // Check if we can replace the value
                if !mode.can_replace() {
                    return Ok(root.clone());
                }
                // Replace the existing value
                break ok!(make_leaf(prefix, key.remaining_bits(), value, finalizer));
            }
            // LCP is less than prefix, an edge to slice was found
            std::cmp::Ordering::Less if lcp.remaining_bits() < prefix.remaining_bits() => {
                // Check if we can add a new value
                if !mode.can_add() {
                    return Ok(root.clone());
                }
                break ok!(split(&remaining_data, prefix, &lcp, key, value, finalizer));
            }
            // The key contains the entire prefix, but there are still some bits left
            std::cmp::Ordering::Less => {
                // Fail fast if there are not enough references in the fork
                let cell = data.cell();
                if cell.reference_count() != 2 {
                    return Err(Error::CellUnderflow);
                }

                // Remove the LCP from the key
                key.try_advance(lcp.remaining_bits(), 0);

                // Load the next branch
                let next_branch = match key.load_bit() {
                    Some(false) => Branch::Left,
                    Some(true) => Branch::Right,
                    None => return Err(Error::CellUnderflow),
                };

                match data.cell().reference(next_branch as u8) {
                    Some(child) => {
                        // Handle pruned branch access
                        if unlikely(child.descriptor().is_pruned_branch()) {
                            return Err(Error::PrunedBranchAccess);
                        }
                        // Push an intermediate edge to the stack
                        stack.push(Segment { data, next_branch });
                        data = child.as_slice()
                    }
                    None => return Err(Error::CellUnderflow),
                }
            }
            std::cmp::Ordering::Greater => {
                debug_assert!(false, "LCP of prefix and key can't be greater than key");
                unsafe { std::hint::unreachable_unchecked() };
            }
        }
    };

    // Rebuild the tree starting from leaves
    while let Some(last) = stack.pop() {
        // Load the opposite branch
        let (left, right) = match last.next_branch {
            Branch::Left => match last.data.cell().reference_cloned(1) {
                Some(cell) => (leaf, cell),
                None => return Err(Error::CellUnderflow),
            },
            Branch::Right => match last.data.cell().reference_cloned(0) {
                Some(cell) => (cell, leaf),
                None => return Err(Error::CellUnderflow),
            },
        };

        let mut builder = CellBuilder::<C>::new();
        if builder.store_slice_data(last.data)
            && builder.store_reference(left)
            && builder.store_reference(right)
        {
            leaf = match builder.build_ext(finalizer) {
                Some(data) => data,
                None => return Err(Error::CellOverflow), // TODO: use errors in finalizer
            };
        } else {
            return Err(Error::CellOverflow);
        }
    }

    Ok(Some(leaf))
}

/// Returns a `CellSlice` of the value corresponding to the key.
pub fn dict_get<'a: 'b, 'b, C>(
    root: &'a Option<CellContainer<C>>,
    key_bit_len: u16,
    mut key: CellSlice<'b, C>,
) -> Result<Option<CellSlice<'a, C>>, Error>
where
    for<'c> C: CellFamily + 'c,
{
    if key.remaining_bits() != key_bit_len {
        return Err(Error::CellUnderflow);
    }

    let data = match root.as_ref() {
        Some(data) => data.as_ref(),
        None => return Ok(None),
    };
    // Handle pruned branch access
    if unlikely(data.descriptor().is_pruned_branch()) {
        return Err(Error::PrunedBranchAccess);
    }
    let mut data = data.as_slice();

    // Try to find the required leaf
    let is_key_empty = loop {
        // Read the key part written in the current edge
        let prefix = match read_label(&mut data, key.remaining_bits()) {
            Some(prefix) => prefix,
            None => return Err(Error::CellUnderflow),
        };

        // Remove this prefix from the key
        match key.strip_data_prefix(&prefix) {
            Some(stripped_key) => {
                if stripped_key.is_data_empty() {
                    // All key parts were collected <=> value found
                    break true;
                } else if data.remaining_refs() < 2 {
                    // Reached leaf while key was not fully constructed
                    return Ok(None);
                } else {
                    key = stripped_key;
                }
            }
            None => break key.is_data_empty(),
        }

        // Load next child based on the next bit
        let child_index = match key.load_bit() {
            Some(index) => index as u8,
            None => return Err(Error::CellUnderflow),
        };
        data = match data.cell().reference(child_index) {
            Some(child) if unlikely(child.descriptor().is_pruned_branch()) => {
                return Err(Error::PrunedBranchAccess);
            }
            Some(child) => child.as_slice(),
            None => return Err(Error::CellUnderflow),
        };
    };

    // Return the last slice as data
    Ok(if is_key_empty { Some(data) } else { None })
}

/// Loads a non-empty dictionary from the root cell.
pub fn dict_load_from_root<C>(
    slice: &mut CellSlice<'_, C>,
    key_bit_len: u16,
    finalizer: &mut dyn Finalizer<C>,
) -> Option<CellContainer<C>>
where
    for<'c> C: CellFamily + 'c,
{
    let mut root = *slice;

    let label = read_label(slice, key_bit_len)?;
    if label.remaining_bits() != key_bit_len {
        if !slice.try_advance(0, 2) {
            return None;
        }
        let root_bits = root.remaining_bits() - slice.remaining_bits();
        let root_refs = root.remaining_refs() - slice.remaining_refs();
        root = root.get_prefix(root_bits, root_refs)
    } else {
        slice.load_remaining();
    }

    let mut builder = CellBuilder::<C>::new();
    if builder.store_slice(root) {
        Some(builder.build_ext(finalizer)?)
    } else {
        None
    }
}

fn write_label<C: CellFamily>(
    key: &CellSlice<C>,
    key_bit_len: u16,
    label: &mut CellBuilder<C>,
) -> bool {
    if key_bit_len == 0 || key.is_data_empty() {
        return write_hml_empty(label);
    }

    let bits_for_len = (16 - key_bit_len.leading_zeros()) as u16;

    let remaining_bits = key.remaining_bits();

    let hml_short_len = 2 + 2 * remaining_bits;
    let hml_long_len = 2 + bits_for_len + remaining_bits;
    let hml_same_len = 3 + bits_for_len;

    if hml_same_len < hml_long_len && hml_same_len < hml_short_len {
        if let Some(bit) = key.test_uniform() {
            return write_hml_same(bit, remaining_bits, bits_for_len, label);
        }
    }

    if hml_short_len <= MAX_BIT_LEN && hml_short_len <= hml_long_len {
        write_hml_short(key, label)
    } else if hml_long_len <= MAX_BIT_LEN {
        write_hml_long(key, bits_for_len, label)
    } else {
        false
    }
}

fn read_label<'a, C>(label: &mut CellSlice<'a, C>, key_bit_len: u16) -> Option<CellSlice<'a, C>>
where
    for<'c> C: CellFamily + 'c,
{
    let bits_for_len = (16 - key_bit_len.leading_zeros()) as u16;

    if label.is_data_empty() && bits_for_len == 0 {
        Some(label.get_prefix(0, 0))
    } else if !label.load_bit()? {
        read_hml_short(label)
    } else if !label.load_bit()? {
        read_hml_long(label, bits_for_len)
    } else {
        read_hml_same(label, bits_for_len)
    }
}

fn write_hml_empty<C: CellFamily>(label: &mut CellBuilder<C>) -> bool {
    label.store_zeros(2)
}

fn write_hml_short<C: CellFamily>(key: &CellSlice<C>, label: &mut CellBuilder<C>) -> bool {
    if !label.store_bit_zero() {
        return false;
    }

    let len = key.remaining_bits();
    for _ in 0..len / 32 {
        if !label.store_u32(u32::MAX) {
            return false;
        }
    }

    let rem = len % 32;
    if rem != 0 && !label.store_uint(u64::MAX, rem) {
        return false;
    }
    label.store_bit_zero() && label.store_slice_data(key)
}

fn read_hml_short<'a, C: CellFamily>(label: &mut CellSlice<'a, C>) -> Option<CellSlice<'a, C>> {
    let mut len = 0;
    while label.load_bit()? {
        len += 1;
    }
    let result = *label;
    if label.try_advance(len, 0) {
        Some(result.get_prefix(len, 0))
    } else {
        None
    }
}

fn write_hml_long<C: CellFamily>(
    key: &CellSlice<C>,
    bits_for_len: u16,
    label: &mut CellBuilder<C>,
) -> bool {
    label.store_bit_one()
        && label.store_bit_zero()
        && label.store_uint(key.remaining_bits() as u64, bits_for_len)
        && label.store_slice_data(key)
}

fn read_hml_long<'a, C: CellFamily>(
    label: &mut CellSlice<'a, C>,
    bits_for_len: u16,
) -> Option<CellSlice<'a, C>> {
    let len = label.load_uint(bits_for_len)? as u16;
    let result = *label;
    if label.try_advance(len, 0) {
        Some(result.get_prefix(len, 0))
    } else {
        None
    }
}

fn write_hml_same<C: CellFamily>(
    bit: bool,
    len: u16,
    bits_for_len: u16,
    label: &mut CellBuilder<C>,
) -> bool {
    label.store_small_uint(0b110 | bit as u8, 3) && label.store_uint(len as u64, bits_for_len)
}

fn read_hml_same<'a, C>(label: &mut CellSlice<'a, C>, bits_for_len: u16) -> Option<CellSlice<'a, C>>
where
    for<'c> C: CellFamily + 'c,
{
    let cell = match label.load_bit()? {
        false => C::all_zeros_ref(),
        true => C::all_ones_ref(),
    };
    let len = label.load_uint(bits_for_len)? as u16;
    Some(cell.as_slice().get_prefix(len, 0))
}

fn serialize_entry<C: CellFamily, T: Store<C>>(
    entry: &T,
    finalizer: &mut dyn Finalizer<C>,
) -> Result<CellContainer<C>, Error> {
    let mut builder = CellBuilder::<C>::new();
    if entry.store_into(&mut builder, finalizer) {
        if let Some(key) = builder.build_ext(finalizer) {
            return Ok(key);
        }
    }
    Err(Error::CellOverflow)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{RcCell, RcCellBuilder};

    fn build_cell<F: FnOnce(&mut RcCellBuilder) -> bool>(f: F) -> RcCell {
        let mut builder = RcCellBuilder::new();
        assert!(f(&mut builder));
        builder.build().unwrap()
    }

    #[test]
    fn labels() {
        let key_bit_len = 6;

        // Build key
        let key = {
            let mut builder = RcCellBuilder::new();
            builder.store_zeros(5);
            builder.store_bit_one();
            builder.build().unwrap()
        };

        // Build label
        let label = {
            let mut builder = RcCellBuilder::new();
            assert!(write_label(&key.as_slice(), key_bit_len, &mut builder));
            builder.build().unwrap()
        };

        // Parse label
        let parsed_key = read_label(&mut label.as_slice(), key_bit_len).unwrap();
        let parsed_key = {
            let mut builder = RcCellBuilder::new();
            builder.store_slice(parsed_key);
            builder.build().unwrap()
        };

        // Parsed key should be equal to the original
        assert_eq!(key.as_ref(), parsed_key.as_ref());

        let label = RcCellBuilder::from_raw_data(&[0xcc, 0x40], 9)
            .unwrap()
            .build()
            .unwrap();
        let prefix = read_label(&mut label.as_slice(), 32).unwrap();

        println!("{}", build_cell(|b| b.store_slice(prefix)).display_tree());
        assert_eq!(prefix.test_uniform(), Some(false));
    }
}