1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//! Boolean expressions.

#[cfg(not(feature = "std"))]
use alloc::{vec, vec::Vec};
use core::{fmt, mem};

use crate::bit_set::BitSet;
use crate::sparse::SparseIndex;

/// Represents an arbitrary boolean expression from boolean algebra. Values of
/// type `T` are used as the variables.
pub struct BoolExpr<T> {
    // The boolean expression in disjunctive normal form,
    // e.g. (A ∧ B ∧ ¬C) ∨ (D ∧ ¬E ∧ ¬F). This is an "OR of ANDs".
    ands: Vec<Ands<T>>,
}

struct Ands<T> {
    vars: BitSet<T>,
    negated_vars: BitSet<T>,
}

impl<T> Ands<T> {
    fn new() -> Self {
        Self {
            vars: BitSet::new(),
            negated_vars: BitSet::new(),
        }
    }
}

#[allow(clippy::should_implement_trait)]
impl<T> BoolExpr<T> {
    /// Creates an new expression of either `true` or `false`.
    pub fn new(b: bool) -> Self {
        Self {
            ands: if b { vec![Ands::new()] } else { vec![] },
        }
    }

    /// Create an expression from a single variable.
    pub fn var(value: T) -> Self
    where
        T: SparseIndex,
    {
        Self {
            ands: vec![Ands {
                vars: {
                    let mut vars = BitSet::new();
                    vars.insert(value);
                    vars
                },
                negated_vars: BitSet::new(),
            }],
        }
    }

    /// Create an expression from a single negated variable. Equivalent to
    /// `BoolExpr::var(value).not()`.
    pub fn not_var(value: T) -> Self
    where
        T: SparseIndex,
    {
        Self {
            ands: vec![Ands {
                vars: BitSet::new(),
                negated_vars: {
                    let mut negated_vars = BitSet::new();
                    negated_vars.insert(value);
                    negated_vars
                },
            }],
        }
    }

    /// Evaluate the boolean expression. `get_var` provides the values of the
    /// variables in the expression.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use evenio::bool_expr::BoolExpr;
    ///
    /// const A: u32 = 0;
    /// const B: u32 = 1;
    ///
    /// let expr = BoolExpr::var(A).xor(&BoolExpr::var(B));
    ///
    /// let get_var = |a, b| {
    ///     move |var| match var {
    ///         A => a,
    ///         B => b,
    ///         _ => false,
    ///     }
    /// };
    ///
    /// assert_eq!(expr.eval(get_var(false, false)), false);
    /// assert_eq!(expr.eval(get_var(true, false)), true);
    /// assert_eq!(expr.eval(get_var(false, true)), true);
    /// assert_eq!(expr.eval(get_var(true, true)), false);
    /// ```
    pub fn eval<F>(&self, mut get_var: F) -> bool
    where
        T: SparseIndex,
        F: FnMut(T) -> bool,
    {
        'ands: for ands in &self.ands {
            for var in &ands.vars {
                if !get_var(var) {
                    continue 'ands;
                }
            }

            for var in &ands.negated_vars {
                if get_var(var) {
                    continue 'ands;
                }
            }

            return true;
        }

        false
    }

    /// AND two expressions together.
    #[must_use]
    pub fn and(mut self, other: &Self) -> Self
    where
        T: SparseIndex,
    {
        let mut res = Vec::new();
        for this in &self.ands {
            for other in &other.ands {
                let mut new_ands = this.clone();

                new_ands.vars |= &other.vars;
                new_ands.negated_vars |= &other.negated_vars;

                // Skip contradictions.
                if new_ands.vars.is_disjoint(&new_ands.negated_vars) {
                    res.push(new_ands);
                }
            }
        }

        self.ands = res;
        self
    }

    /// OR two expressions together.
    #[must_use]
    pub fn or(mut self, other: &Self) -> Self
    where
        T: SparseIndex,
    {
        self.ands.extend(other.ands.iter().cloned());
        self
    }

    /// Negates `self`.
    #[must_use]
    pub fn not(mut self) -> Self
    where
        T: SparseIndex,
    {
        let mut res = Self::new(true);

        // Apply De Morgan's laws.
        for mut ands in mem::take(&mut self.ands) {
            let mut ors = Self::new(false);

            mem::swap(&mut ands.vars, &mut ands.negated_vars);

            for var in &ands.vars {
                let mut a = Ands::new();
                a.vars.insert(var);
                ors.ands.push(a);
            }

            for negated_var in &ands.negated_vars {
                let mut a = Ands::new();
                a.negated_vars.insert(negated_var);
                ors.ands.push(a);
            }

            res = res.and(&ors);
        }

        res
    }

    /// XOR two expressions together.
    pub fn xor(self, other: &Self) -> Self
    where
        T: SparseIndex,
    {
        // A ⊻ B ≡ (A ∧ ¬B) ∨ (B ∧ ¬A)
        self.clone()
            .and(&other.clone().not())
            .or(&other.clone().and(&self.not()))
    }

    /// Determines if `self` and `other` are disjoint, i.e. if there is no
    /// combination of values the variables could have to make both expressions
    /// true at the same time.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use evenio::bool_expr::BoolExpr;
    ///
    /// // `A` is not disjoint with `B`
    /// assert!(!BoolExpr::var(A).is_disjoint(&BoolExpr::var(B)));
    ///
    /// // `A` is disjoint with `¬A`.
    /// assert!(BoolExpr::var(A).is_disjoint(&BoolExpr::not_var(A)));
    ///
    /// // `A ∧ ¬A` is disjoint with `B ∧ C`.
    /// let left = BoolExpr::var(A).and(&BoolExpr::not_var(A));
    /// let right = BoolExpr::var(C).and(&BoolExpr::var(D));
    /// assert!(left.is_disjoint(&right));
    ///
    /// const A: u32 = 0;
    /// const B: u32 = 1;
    /// const C: u32 = 2;
    /// const D: u32 = 3;
    /// ```
    pub fn is_disjoint(&self, other: &Self) -> bool {
        self.ands.iter().all(|this| {
            other.ands.iter().all(|other| {
                !this.vars.is_disjoint(&this.negated_vars)
                    || !other.vars.is_disjoint(&other.negated_vars)
                    || !this.vars.is_disjoint(&other.negated_vars)
                    || !other.vars.is_disjoint(&this.negated_vars)
            })
        })
    }
}

impl<T> Clone for BoolExpr<T> {
    fn clone(&self) -> Self {
        Self {
            ands: self.ands.clone(),
        }
    }
}

impl<T> Clone for Ands<T> {
    fn clone(&self) -> Self {
        Self {
            vars: self.vars.clone(),
            negated_vars: self.negated_vars.clone(),
        }
    }
}

impl<T> fmt::Debug for BoolExpr<T>
where
    T: SparseIndex + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.ands.is_empty() {
            write!(f, "⊥")?;
        } else {
            let mut first = true;

            for ands in &self.ands {
                if !first {
                    write!(f, " ∨ ")?;
                }
                first = false;

                if ands.vars.is_empty() && ands.negated_vars.is_empty() {
                    write!(f, "⊤")?;
                } else {
                    let mut first = true;

                    for var in &ands.vars {
                        if !first {
                            write!(f, " ∧ ")?;
                        }
                        first = false;

                        write!(f, "{var:?}")?;
                    }

                    for var in &ands.negated_vars {
                        if !first {
                            write!(f, " ∧ ")?;
                        }
                        first = false;

                        write!(f, "¬{var:?}")?;
                    }
                }
            }
        }

        Ok(())
    }
}