1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
use crate::motors::Motor; use crate::{wait, Ev3Result}; use std::time::Duration; /// Causes the motor to run until another command is sent. pub const RUN_FOREVER: &str = "run-forever"; /// Runs the motor to an absolute position specified by `position_sp` /// and then stops the motor using the command specified in `stop_action`. pub const RUN_TO_ABS_POS: &str = "run-to-abs-pos"; /// Runs the motor to a position relative to the current position value. /// The new position will be current `position` + `position_sp`. /// When the new position is reached, the motor will stop using the command specified by `stop_action`. pub const RUN_TO_REL_POS: &str = "run-to-rel-pos"; /// Run the motor for the amount of time specified in `time_sp` /// and then stops the motor using the command specified by `stop_action`. pub const RUN_TIMED: &str = "run-timed"; /// Runs the motor using the duty cycle specified by `duty_cycle_sp`. /// Unlike other run commands, changing `duty_cycle_sp` while running will take effect immediately. pub const RUN_DIRECT: &str = "run-direct"; /// Stop any of the run commands before they are complete using the command specified by `stop_action`. pub const STOP: &str = "stop"; /// Resets all of the motor parameter attributes to their default values. /// This will also have the effect of stopping the motor. pub const RESET: &str = "reset"; /// A positive duty cycle will cause the motor to rotate clockwise. pub const POLARITY_NORMAL: &str = "normal"; /// A positive duty cycle will cause the motor to rotate counter-clockwise. pub const POLARITY: &str = "reversed"; /// Power is being sent to the motor. pub const STATE_RUNNING: &str = "running"; /// The motor is ramping up or down and has not yet reached a pub constant output level. pub const STATE_RAMPING: &str = "ramping"; /// The motor is not turning, but rather attempting to hold a fixed position. pub const STATE_HOLDING: &str = "holding"; /// The motor is turning as fast as possible, but cannot reach its `speed_sp`. pub const STATE_OVERLOADED: &str = "overloaded"; /// The motor is trying to run but is not turning at all. pub const STATE_STALLED: &str = "stalled"; /// Removes power from the motor. The motor will freely coast to a stop. pub const STOP_ACTION_COAST: &str = "coast"; /// Removes power from the motor and creates a passive electrical load. /// This is usually done by shorting the motor terminals together. /// This load will absorb the energy from the rotation of the motors /// and cause the motor to stop more quickly than coasting. pub const STOP_ACTION_BRAKE: &str = "brake"; /// Causes the motor to actively try to hold the current position. /// If an external force tries to turn the motor, the motor will “push back” to maintain its position. pub const STOP_ACTION_HOLD: &str = "hold"; /// The `tacho-motor` class provides a uniform interface for using motors with positional /// and directional feedback such as the EV3 and NXT motors. /// This feedback allows for precise control of the motors. pub trait TachoMotor: Motor { /// Returns the number of tacho counts in one rotation of the motor. /// Tacho counts are used by the position and speed attributes, /// so you can use this value to convert from rotations or degrees to tacho counts. /// (rotation motors only) fn get_count_per_rot(&self) -> Ev3Result<i32> { self.get_attribute("count_per_rot").get() } /// Returns the number of tacho counts in one meter of travel of the motor. /// Tacho counts are used by the position and speed attributes, /// so you can use this value to convert from distance to tacho counts. /// (linear motors only) fn get_count_per_m(&self) -> Ev3Result<i32> { self.get_attribute("count_per_m").get() } /// Returns the number of tacho counts in the full travel of the motor. /// When combined with the count_per_m atribute, /// you can use this value to calculate the maximum travel distance of the motor. /// (linear motors only) fn get_full_travel_count(&self) -> Ev3Result<i32> { self.get_attribute("full_travel_count").get() } /// Returns the current duty cycle of the motor. Units are percent. Values are -100 to 100. fn get_duty_cycle(&self) -> Ev3Result<i32> { self.get_attribute("duty_cycle").get() } /// Returns the current duty cycle setpoint of the motor. Units are in percent. /// Valid values are -100 to 100. A negative value causes the motor to rotate in reverse. fn get_duty_cycle_sp(&self) -> Ev3Result<i32> { self.get_attribute("duty_cycle_sp").get() } /// Sets the duty cycle setpoint of the motor. Units are in percent. /// Valid values are -100 to 100. A negative value causes the motor to rotate in reverse. fn set_duty_cycle_sp(&self, duty_cycle: i32) -> Ev3Result<()> { self.get_attribute("duty_cycle_sp").set(duty_cycle) } /// Returns the current polarity of the motor. fn get_polarity(&self) -> Ev3Result<String> { self.get_attribute("polarity").get() } /// Sets the polarity of the motor. fn set_polarity(&self, polarity: &str) -> Ev3Result<()> { self.get_attribute("polarity").set_str_slice(polarity) } /// Returns the current position of the motor in pulses of the rotary encoder. /// When the motor rotates clockwise, the position will increase. /// Likewise, rotating counter-clockwise causes the position to decrease. /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer) fn get_position(&self) -> Ev3Result<i32> { self.get_attribute("position").get() } /// Sets the current position of the motor in pulses of the rotary encoder. /// When the motor rotates clockwise, the position will increase. /// Likewise, rotating counter-clockwise causes the position to decrease. /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer) fn set_position(&self, position: i32) -> Ev3Result<()> { self.get_attribute("position").set(position) } /// Returns the proportional pub constant for the position PID. fn get_hold_pid_kp(&self) -> Ev3Result<f32> { self.get_attribute("hold_pid_kp").get() } /// Sets the proportional pub constant for the position PID. fn set_hold_pid_kp(&self, kp: f32) -> Ev3Result<()> { self.get_attribute("hold_pid_kp").set(kp) } /// Returns the integral pub constant for the position PID. fn get_hold_pid_ki(&self) -> Ev3Result<f32> { self.get_attribute("hold_pid_ki").get() } /// Sets the integral pub constant for the position PID. fn set_hold_pid_ki(&self, ki: f32) -> Ev3Result<()> { self.get_attribute("hold_pid_ki").set(ki) } /// Returns the derivative pub constant for the position PID. fn get_hold_pid_kd(&self) -> Ev3Result<f32> { self.get_attribute("hold_pid_kd").get() } /// Sets the derivative pub constant for the position PID. fn set_hold_pid_kd(&self, kd: f32) -> Ev3Result<()> { self.get_attribute("hold_pid_kd").set(kd) } /// Returns the maximum value that is accepted by the `speed_sp` /// attribute. This value is the speed of the motor at 9V with no load. /// Note: The actual maximum obtainable speed will be less than this /// and will depend on battery voltage and mechanical load on the motor. fn get_max_speed(&self) -> Ev3Result<i32> { self.get_attribute("max_speed").get() } /// Returns the current target position for the `run-to-abs-pos` and `run-to-rel-pos` commands. Units are in tacho counts. /// You can use the value returned by `counts_per_rot` to convert tacho counts to/from rotations or degrees. /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer). fn get_position_sp(&self) -> Ev3Result<i32> { self.get_attribute("position_sp").get() } /// Sets the target position for the `run-to-abs-pos` and `run-to-rel-pos` commands. /// Units are in tacho counts. /// You can use the value returned by `counts_per_rot` to convert tacho counts to/from rotations or degrees. /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer). fn set_position_sp(&self, position_sp: i32) -> Ev3Result<()> { self.get_attribute("position_sp").set(position_sp) } /// Returns the current motor speed in tacho counts per second. /// Note, this is not necessarily degrees (although it is for LEGO motors). /// Use the `count_per_rot` attribute to convert this value to RPM or deg/sec. fn get_speed(&self) -> Ev3Result<i32> { self.get_attribute("speed").get() } /// Returns the target speed in tacho counts per second used for all run-* commands except run-direct. /// A negative value causes the motor to rotate in reverse /// with the exception of run-to-*-pos commands where the sign is ignored. /// Use the `count_per_rot` attribute to convert RPM or deg/sec to tacho counts per second. /// Use the `count_per_m` attribute to convert m/s to tacho counts per second. fn get_speed_sp(&self) -> Ev3Result<i32> { self.get_attribute("speed_sp").get() } /// Sets the target speed in tacho counts per second used for all run-* commands except run-direct. /// A negative value causes the motor to rotate in reverse /// with the exception of run-to-*-pos commands where the sign is ignored. /// Use the `count_per_rot` attribute to convert RPM or deg/sec to tacho counts per second. /// Use the `count_per_m` attribute to convert m/s to tacho counts per second. fn set_speed_sp(&self, speed_sp: i32) -> Ev3Result<()> { self.get_attribute("speed_sp").set(speed_sp) } /// Returns the current ramp up setpoint. /// Units are in milliseconds and must be positive. When set to a non-zero value, /// the motor speed will increase from 0 to 100% of `max_speed` over the span of this setpoint. /// The actual ramp time is the ratio of the difference between the speed_sp /// and the current speed and max_speed multiplied by ramp_up_sp. Values must not be negative. fn get_ramp_up_sp(&self) -> Ev3Result<i32> { self.get_attribute("ramp_up_sp").get() } /// Sets the ramp up setpoint. /// Units are in milliseconds and must be positive. When set to a non-zero value, /// the motor speed will increase from 0 to 100% of `max_speed` over the span of this setpoint. /// The actual ramp time is the ratio of the difference between the speed_sp /// and the current speed and max_speed multiplied by ramp_up_sp. Values must not be negative. fn set_ramp_up_sp(&self, ramp_up_sp: i32) -> Ev3Result<()> { self.get_attribute("ramp_up_sp").set(ramp_up_sp) } /// Returns the current ramp down setpoint. /// Units are in milliseconds and must be positive. When set to a non-zero value, /// the motor speed will decrease from 100% down to 0 of `max_speed` over the span of this setpoint. /// The actual ramp time is the ratio of the difference between the speed_sp /// and the current speed and 0 multiplied by ramp_down_sp. Values must not be negative. fn get_ramp_down_sp(&self) -> Ev3Result<i32> { self.get_attribute("ramp_down_sp").get() } /// Sets the ramp down setpoint. /// Units are in milliseconds and must be positive. When set to a non-zero value, /// the motor speed will decrease from 100% down to 0 of `max_speed` over the span of this setpoint. /// The actual ramp time is the ratio of the difference between the speed_sp /// and the current speed and 0 multiplied by ramp_down_sp. Values must not be negative. fn set_ramp_down_sp(&self, ramp_down_sp: i32) -> Ev3Result<()> { self.get_attribute("ramp_down_sp").set(ramp_down_sp) } /// Returns the proportional pub constant for the speed regulation PID. fn get_speed_pid_kp(&self) -> Ev3Result<f32> { self.get_attribute("speed_pid_kp").get() } /// Sets the proportional pub constant for the speed regulation PID. fn set_speed_pid_kp(&self, kp: f32) -> Ev3Result<()> { self.get_attribute("speed_pid_kp").set(kp) } /// Returns the integral pub constant for the speed regulation PID. fn get_speed_pid_ki(&self) -> Ev3Result<f32> { self.get_attribute("speed_pid_ki").get() } /// Sets the integral pub constant for the speed regulation PID. fn set_speed_pid_ki(&self, ki: f32) -> Ev3Result<()> { self.get_attribute("speed_pid_ki").set(ki) } /// Returns the derivative pub constant for the speed regulation PID. fn get_speed_pid_kd(&self) -> Ev3Result<f32> { self.get_attribute("speed_pid_kd").get() } /// Sets the derivative pub constant for the speed regulation PID. fn set_speed_pid_kd(&self, kd: f32) -> Ev3Result<()> { self.get_attribute("speed_pid_kd").set(kd) } /// Returns a list of state flags. fn get_state(&self) -> Ev3Result<Vec<String>> { self.get_attribute("state").get_vec() } /// Returns the current stop action. /// The value determines the motors behavior when command is set to stop. fn get_stop_action(&self) -> Ev3Result<String> { self.get_attribute("stop_action").get() } /// Sets the stop action. /// The value determines the motors behavior when command is set to stop. fn set_stop_action(&self, stop_action: &str) -> Ev3Result<()> { self.get_attribute("stop_action").set_str_slice(stop_action) } /// Returns a list of stop actions supported by the motor controller. fn get_stop_actions(&self) -> Ev3Result<Vec<String>> { self.get_attribute("stop_actions").get_vec() } /// Returns the current amount of time the motor will run when using the run-timed command. /// Units are in milliseconds. Values must not be negative. fn get_time_sp(&self) -> Ev3Result<i32> { self.get_attribute("time_sp").get() } /// Sets the amount of time the motor will run when using the run-timed command. /// Units are in milliseconds. Values must not be negative. fn set_time_sp(&self, time_sp: i32) -> Ev3Result<()> { self.get_attribute("time_sp").set(time_sp) } /// Runs the motor using the duty cycle specified by `duty_cycle_sp`. /// Unlike other run commands, changing `duty_cycle_sp` while running will take effect immediately. fn run_direct(&self) -> Ev3Result<()> { self.set_command(RUN_DIRECT) } /// Causes the motor to run until another command is sent. fn run_forever(&self) -> Ev3Result<()> { self.set_command(RUN_FOREVER) } /// Runs the motor to an absolute position specified by `position_sp` /// and then stops the motor using the command specified in `stop_action`. fn run_to_abs_pos(&self, position_sp: Option<i32>) -> Ev3Result<()> { if let Some(p) = position_sp { self.set_position_sp(p)?; } self.set_command(RUN_TO_ABS_POS) } /// Runs the motor to a position relative to the current position value. /// The new position will be current `position` + `position_sp`. /// When the new position is reached, the motor will stop using the command specified by `stop_action`. fn run_to_rel_pos(&self, position_sp: Option<i32>) -> Ev3Result<()> { if let Some(p) = position_sp { self.set_position_sp(p)?; } self.set_command(RUN_TO_REL_POS) } /// Run the motor for the amount of time specified in `time_sp` /// and then stops the motor using the command specified by `stop_action`. fn run_timed(&self, time_sp: Option<Duration>) -> Ev3Result<()> { if let Some(duration) = time_sp { let p = duration.as_millis() as i32; self.set_time_sp(p)?; } self.set_command(RUN_TIMED) } /// Stop any of the run commands before they are complete using the command specified by `stop_action`. fn stop(&self) -> Ev3Result<()> { self.set_command(STOP) } /// Resets all of the motor parameter attributes to their default values. /// This will also have the effect of stopping the motor. fn reset(&self) -> Ev3Result<()> { self.set_command(RESET) } /// Power is being sent to the motor. fn is_running(&self) -> Ev3Result<bool> { Ok(self.get_state()?.iter().any(|state| state == STATE_RUNNING)) } /// The motor is ramping up or down and has not yet reached a pub constant output level. fn is_ramping(&self) -> Ev3Result<bool> { Ok(self.get_state()?.iter().any(|state| state == STATE_RAMPING)) } /// The motor is not turning, but rather attempting to hold a fixed position. fn is_holding(&self) -> Ev3Result<bool> { Ok(self.get_state()?.iter().any(|state| state == STATE_HOLDING)) } /// The motor is turning as fast as possible, but cannot reach its `speed_sp`. fn is_overloaded(&self) -> Ev3Result<bool> { Ok(self .get_state()? .iter() .any(|state| state == STATE_OVERLOADED)) } /// The motor is trying to run but is not turning at all. fn is_stalled(&self) -> Ev3Result<bool> { Ok(self.get_state()?.iter().any(|state| state == STATE_STALLED)) } /// Wait until condition `cond` returns true or the `timeout` is reached. /// The condition is checked when to the `state` attribute has changed. /// If the `timeout` is `None` it will wait an infinite time. fn wait<F>(&self, cond: F, timeout: Option<Duration>) -> bool where F: Fn() -> bool, { let fd = self.get_attribute("state").get_raw_fd(); wait::wait(fd, cond, timeout) } /// Wait while the `state` is in the vector `self.get_state()` or the `timeout` is reached. /// If the `timeout` is `None` it will wait an infinite time. fn wait_while(&self, state: &str, timeout: Option<Duration>) -> bool { let cond = || { self.get_state() .unwrap_or_else(|_| vec![]) .iter() .all(|s| s != state) }; self.wait(cond, timeout) } /// Wait until the `state` is in the vector `self.get_state()` or the `timeout` is reached. /// If the `timeout` is `None` it will wait an infinite time. fn wait_until(&self, state: &str, timeout: Option<Duration>) -> bool { let cond = || { self.get_state() .unwrap_or_else(|_| vec![]) .iter() .any(|s| s == state) }; self.wait(cond, timeout) } /// Wait until the motor is not moving or the timeout is reached. /// This is euqal to `wait_until(STATE_RUNNING, timeout)` /// If the `timeout` is `None` it will wait an infinite time. fn wait_until_not_moving(&self, timeout: Option<Duration>) -> bool { self.wait_while(STATE_RUNNING, timeout) } }