1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use crate::motors::Motor;
use crate::{wait, Ev3Result};

use std::time::Duration;

/// Causes the motor to run until another command is sent.
pub const RUN_FOREVER: &str = "run-forever";

/// Runs the motor to an absolute position specified by `position_sp`
/// and then stops the motor using the command specified in `stop_action`.
pub const RUN_TO_ABS_POS: &str = "run-to-abs-pos";

/// Runs the motor to a position relative to the current position value.
/// The new position will be current `position` + `position_sp`.
/// When the new position is reached, the motor will stop using the command specified by `stop_action`.
pub const RUN_TO_REL_POS: &str = "run-to-rel-pos";

/// Run the motor for the amount of time specified in `time_sp`
/// and then stops the motor using the command specified by `stop_action`.
pub const RUN_TIMED: &str = "run-timed";

/// Runs the motor using the duty cycle specified by `duty_cycle_sp`.
/// Unlike other run commands, changing `duty_cycle_sp` while running will take effect immediately.
pub const RUN_DIRECT: &str = "run-direct";

/// Stop any of the run commands before they are complete using the command specified by `stop_action`.
pub const STOP: &str = "stop";

/// Resets all of the motor parameter attributes to their default values.
/// This will also have the effect of stopping the motor.
pub const RESET: &str = "reset";

/// A positive duty cycle will cause the motor to rotate clockwise.
pub const POLARITY_NORMAL: &str = "normal";

/// A positive duty cycle will cause the motor to rotate counter-clockwise.
pub const POLARITY: &str = "reversed";

/// Power is being sent to the motor.
pub const STATE_RUNNING: &str = "running";

/// The motor is ramping up or down and has not yet reached a pub constant output level.
pub const STATE_RAMPING: &str = "ramping";

/// The motor is not turning, but rather attempting to hold a fixed position.
pub const STATE_HOLDING: &str = "holding";

/// The motor is turning as fast as possible, but cannot reach its `speed_sp`.
pub const STATE_OVERLOADED: &str = "overloaded";

/// The motor is trying to run but is not turning at all.
pub const STATE_STALLED: &str = "stalled";

/// Removes power from the motor. The motor will freely coast to a stop.
pub const STOP_ACTION_COAST: &str = "coast";

/// Removes power from the motor and creates a passive electrical load.
/// This is usually done by shorting the motor terminals together.
/// This load will absorb the energy from the rotation of the motors
/// and cause the motor to stop more quickly than coasting.
pub const STOP_ACTION_BRAKE: &str = "brake";

/// Causes the motor to actively try to hold the current position.
/// If an external force tries to turn the motor, the motor will “push back” to maintain its position.
pub const STOP_ACTION_HOLD: &str = "hold";

/// The `tacho-motor` class provides a uniform interface for using motors with positional
/// and directional feedback such as the EV3 and NXT motors.
/// This feedback allows for precise control of the motors.
pub trait TachoMotor: Motor {
    /// Returns the number of tacho counts in one rotation of the motor.
    /// Tacho counts are used by the position and speed attributes,
    /// so you can use this value to convert from rotations or degrees to tacho counts.
    /// (rotation motors only)
    fn get_count_per_rot(&self) -> Ev3Result<i32> {
        self.get_attribute("count_per_rot").get()
    }

    /// Returns the number of tacho counts in one meter of travel of the motor.
    /// Tacho counts are used by the position and speed attributes,
    /// so you can use this value to convert from distance to tacho counts.
    /// (linear motors only)
    fn get_count_per_m(&self) -> Ev3Result<i32> {
        self.get_attribute("count_per_m").get()
    }

    /// Returns the number of tacho counts in the full travel of the motor.
    /// When combined with the count_per_m atribute,
    /// you can use this value to calculate the maximum travel distance of the motor.
    /// (linear motors only)
    fn get_full_travel_count(&self) -> Ev3Result<i32> {
        self.get_attribute("full_travel_count").get()
    }

    /// Returns the current duty cycle of the motor. Units are percent. Values are -100 to 100.
    fn get_duty_cycle(&self) -> Ev3Result<i32> {
        self.get_attribute("duty_cycle").get()
    }

    /// Returns the current duty cycle setpoint of the motor. Units are in percent.
    /// Valid values are -100 to 100. A negative value causes the motor to rotate in reverse.
    fn get_duty_cycle_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("duty_cycle_sp").get()
    }

    /// Sets the duty cycle setpoint of the motor. Units are in percent.
    /// Valid values are -100 to 100. A negative value causes the motor to rotate in reverse.
    fn set_duty_cycle_sp(&self, duty_cycle: i32) -> Ev3Result<()> {
        self.get_attribute("duty_cycle_sp").set(duty_cycle)
    }

    /// Returns the current polarity of the motor.
    fn get_polarity(&self) -> Ev3Result<String> {
        self.get_attribute("polarity").get()
    }

    /// Sets the polarity of the motor.
    fn set_polarity(&self, polarity: &str) -> Ev3Result<()> {
        self.get_attribute("polarity").set_str_slice(polarity)
    }

    /// Returns the current position of the motor in pulses of the rotary encoder.
    /// When the motor rotates clockwise, the position will increase.
    /// Likewise, rotating counter-clockwise causes the position to decrease.
    /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer)
    fn get_position(&self) -> Ev3Result<i32> {
        self.get_attribute("position").get()
    }

    /// Sets the current position of the motor in pulses of the rotary encoder.
    /// When the motor rotates clockwise, the position will increase.
    /// Likewise, rotating counter-clockwise causes the position to decrease.
    /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer)
    fn set_position(&self, position: i32) -> Ev3Result<()> {
        self.get_attribute("position").set(position)
    }

    /// Returns the proportional pub constant for the position PID.
    fn get_hold_pid_kp(&self) -> Ev3Result<f32> {
        self.get_attribute("hold_pid_kp").get()
    }

    /// Sets the proportional pub constant for the position PID.
    fn set_hold_pid_kp(&self, kp: f32) -> Ev3Result<()> {
        self.get_attribute("hold_pid_kp").set(kp)
    }

    /// Returns the integral pub constant for the position PID.
    fn get_hold_pid_ki(&self) -> Ev3Result<f32> {
        self.get_attribute("hold_pid_ki").get()
    }

    /// Sets the integral pub constant for the position PID.
    fn set_hold_pid_ki(&self, ki: f32) -> Ev3Result<()> {
        self.get_attribute("hold_pid_ki").set(ki)
    }

    /// Returns the derivative pub constant for the position PID.
    fn get_hold_pid_kd(&self) -> Ev3Result<f32> {
        self.get_attribute("hold_pid_kd").get()
    }

    /// Sets the derivative pub constant for the position PID.
    fn set_hold_pid_kd(&self, kd: f32) -> Ev3Result<()> {
        self.get_attribute("hold_pid_kd").set(kd)
    }

    /// Returns the maximum value that is accepted by the `speed_sp`
    /// attribute. This value is the speed of the motor at 9V with no load.
    /// Note: The actual maximum obtainable speed will be less than this
    /// and will depend on battery voltage and mechanical load on the motor.
    fn get_max_speed(&self) -> Ev3Result<i32> {
        self.get_attribute("max_speed").get()
    }

    /// Returns the current target position for the `run-to-abs-pos` and `run-to-rel-pos` commands. Units are in tacho counts.
    /// You can use the value returned by `counts_per_rot` to convert tacho counts to/from rotations or degrees.
    /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer).
    fn get_position_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("position_sp").get()
    }

    /// Sets the target position for the `run-to-abs-pos` and `run-to-rel-pos` commands.
    /// Units are in tacho counts.
    /// You can use the value returned by `counts_per_rot` to convert tacho counts to/from rotations or degrees.
    /// The range is -2,147,483,648 and +2,147,483,647 tachometer counts (32-bit signed integer).
    fn set_position_sp(&self, position_sp: i32) -> Ev3Result<()> {
        self.get_attribute("position_sp").set(position_sp)
    }

    /// Returns the current motor speed in tacho counts per second.
    /// Note, this is not necessarily degrees (although it is for LEGO motors).
    /// Use the `count_per_rot` attribute to convert this value to RPM or deg/sec.
    fn get_speed(&self) -> Ev3Result<i32> {
        self.get_attribute("speed").get()
    }

    /// Returns the target speed in tacho counts per second used for all run-* commands except run-direct.
    /// A negative value causes the motor to rotate in reverse
    /// with the exception of run-to-*-pos commands where the sign is ignored.
    /// Use the `count_per_rot` attribute to convert RPM or deg/sec to tacho counts per second.
    /// Use the `count_per_m` attribute to convert m/s to tacho counts per second.
    fn get_speed_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("speed_sp").get()
    }

    /// Sets the target speed in tacho counts per second used for all run-* commands except run-direct.
    /// A negative value causes the motor to rotate in reverse
    /// with the exception of run-to-*-pos commands where the sign is ignored.
    /// Use the `count_per_rot` attribute to convert RPM or deg/sec to tacho counts per second.
    /// Use the `count_per_m` attribute to convert m/s to tacho counts per second.
    fn set_speed_sp(&self, speed_sp: i32) -> Ev3Result<()> {
        self.get_attribute("speed_sp").set(speed_sp)
    }

    /// Returns the current ramp up setpoint.
    /// Units are in milliseconds and must be positive. When set to a non-zero value,
    /// the motor speed will increase from 0 to 100% of `max_speed` over the span of this setpoint.
    /// The actual ramp time is the ratio of the difference between the speed_sp
    /// and the current speed and max_speed multiplied by ramp_up_sp. Values must not be negative.
    fn get_ramp_up_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("ramp_up_sp").get()
    }

    /// Sets the ramp up setpoint.
    /// Units are in milliseconds and must be positive. When set to a non-zero value,
    /// the motor speed will increase from 0 to 100% of `max_speed` over the span of this setpoint.
    /// The actual ramp time is the ratio of the difference between the speed_sp
    /// and the current speed and max_speed multiplied by ramp_up_sp. Values must not be negative.
    fn set_ramp_up_sp(&self, ramp_up_sp: i32) -> Ev3Result<()> {
        self.get_attribute("ramp_up_sp").set(ramp_up_sp)
    }

    /// Returns the current ramp down setpoint.
    /// Units are in milliseconds and must be positive. When set to a non-zero value,
    /// the motor speed will decrease from 100% down to 0 of `max_speed` over the span of this setpoint.
    /// The actual ramp time is the ratio of the difference between the speed_sp
    /// and the current speed and 0 multiplied by ramp_down_sp. Values must not be negative.
    fn get_ramp_down_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("ramp_down_sp").get()
    }

    /// Sets the ramp down setpoint.
    /// Units are in milliseconds and must be positive. When set to a non-zero value,
    /// the motor speed will decrease from 100% down to 0 of `max_speed` over the span of this setpoint.
    /// The actual ramp time is the ratio of the difference between the speed_sp
    /// and the current speed and 0 multiplied by ramp_down_sp. Values must not be negative.
    fn set_ramp_down_sp(&self, ramp_down_sp: i32) -> Ev3Result<()> {
        self.get_attribute("ramp_down_sp").set(ramp_down_sp)
    }

    /// Returns the proportional pub constant for the speed regulation PID.
    fn get_speed_pid_kp(&self) -> Ev3Result<f32> {
        self.get_attribute("speed_pid_kp").get()
    }

    /// Sets the proportional pub constant for the speed regulation PID.
    fn set_speed_pid_kp(&self, kp: f32) -> Ev3Result<()> {
        self.get_attribute("speed_pid_kp").set(kp)
    }

    /// Returns the integral pub constant for the speed regulation PID.
    fn get_speed_pid_ki(&self) -> Ev3Result<f32> {
        self.get_attribute("speed_pid_ki").get()
    }

    /// Sets the integral pub constant for the speed regulation PID.
    fn set_speed_pid_ki(&self, ki: f32) -> Ev3Result<()> {
        self.get_attribute("speed_pid_ki").set(ki)
    }

    /// Returns the derivative pub constant for the speed regulation PID.
    fn get_speed_pid_kd(&self) -> Ev3Result<f32> {
        self.get_attribute("speed_pid_kd").get()
    }

    /// Sets the derivative pub constant for the speed regulation PID.
    fn set_speed_pid_kd(&self, kd: f32) -> Ev3Result<()> {
        self.get_attribute("speed_pid_kd").set(kd)
    }

    /// Returns a list of state flags.
    fn get_state(&self) -> Ev3Result<Vec<String>> {
        self.get_attribute("state").get_vec()
    }

    /// Returns the current stop action.
    /// The value determines the motors behavior when command is set to stop.
    fn get_stop_action(&self) -> Ev3Result<String> {
        self.get_attribute("stop_action").get()
    }

    /// Sets the stop action.
    /// The value determines the motors behavior when command is set to stop.
    fn set_stop_action(&self, stop_action: &str) -> Ev3Result<()> {
        self.get_attribute("stop_action").set_str_slice(stop_action)
    }

    /// Returns a list of stop actions supported by the motor controller.
    fn get_stop_actions(&self) -> Ev3Result<Vec<String>> {
        self.get_attribute("stop_actions").get_vec()
    }

    /// Returns the current amount of time the motor will run when using the run-timed command.
    /// Units are in milliseconds. Values must not be negative.
    fn get_time_sp(&self) -> Ev3Result<i32> {
        self.get_attribute("time_sp").get()
    }

    /// Sets the amount of time the motor will run when using the run-timed command.
    /// Units are in milliseconds. Values must not be negative.
    fn set_time_sp(&self, time_sp: i32) -> Ev3Result<()> {
        self.get_attribute("time_sp").set(time_sp)
    }

    /// Runs the motor using the duty cycle specified by `duty_cycle_sp`.
    /// Unlike other run commands, changing `duty_cycle_sp` while running will take effect immediately.
    fn run_direct(&self) -> Ev3Result<()> {
        self.set_command(RUN_DIRECT)
    }

    /// Causes the motor to run until another command is sent.
    fn run_forever(&self) -> Ev3Result<()> {
        self.set_command(RUN_FOREVER)
    }

    /// Runs the motor to an absolute position specified by `position_sp`
    /// and then stops the motor using the command specified in `stop_action`.
    fn run_to_abs_pos(&self, position_sp: Option<i32>) -> Ev3Result<()> {
        if let Some(p) = position_sp {
            self.set_position_sp(p)?;
        }
        self.set_command(RUN_TO_ABS_POS)
    }

    /// Runs the motor to a position relative to the current position value.
    /// The new position will be current `position` + `position_sp`.
    /// When the new position is reached, the motor will stop using the command specified by `stop_action`.
    fn run_to_rel_pos(&self, position_sp: Option<i32>) -> Ev3Result<()> {
        if let Some(p) = position_sp {
            self.set_position_sp(p)?;
        }
        self.set_command(RUN_TO_REL_POS)
    }

    /// Run the motor for the amount of time specified in `time_sp`
    /// and then stops the motor using the command specified by `stop_action`.
    fn run_timed(&self, time_sp: Option<Duration>) -> Ev3Result<()> {
        if let Some(duration) = time_sp {
            let p = duration.as_millis() as i32;
            self.set_time_sp(p)?;
        }
        self.set_command(RUN_TIMED)
    }

    /// Stop any of the run commands before they are complete using the command specified by `stop_action`.
    fn stop(&self) -> Ev3Result<()> {
        self.set_command(STOP)
    }

    /// Resets all of the motor parameter attributes to their default values.
    /// This will also have the effect of stopping the motor.
    fn reset(&self) -> Ev3Result<()> {
        self.set_command(RESET)
    }

    /// Power is being sent to the motor.
    fn is_running(&self) -> Ev3Result<bool> {
        Ok(self.get_state()?.iter().any(|state| state == STATE_RUNNING))
    }

    /// The motor is ramping up or down and has not yet reached a pub constant output level.
    fn is_ramping(&self) -> Ev3Result<bool> {
        Ok(self.get_state()?.iter().any(|state| state == STATE_RAMPING))
    }

    /// The motor is not turning, but rather attempting to hold a fixed position.
    fn is_holding(&self) -> Ev3Result<bool> {
        Ok(self.get_state()?.iter().any(|state| state == STATE_HOLDING))
    }

    /// The motor is turning as fast as possible, but cannot reach its `speed_sp`.
    fn is_overloaded(&self) -> Ev3Result<bool> {
        Ok(self
            .get_state()?
            .iter()
            .any(|state| state == STATE_OVERLOADED))
    }

    /// The motor is trying to run but is not turning at all.
    fn is_stalled(&self) -> Ev3Result<bool> {
        Ok(self.get_state()?.iter().any(|state| state == STATE_STALLED))
    }

    /// Wait until condition `cond` returns true or the `timeout` is reached.
    /// The condition is checked when to the `state` attribute has changed.
    /// If the `timeout` is `None` it will wait an infinite time.
    fn wait<F>(&self, cond: F, timeout: Option<Duration>) -> bool
    where
        F: Fn() -> bool,
    {
        let fd = self.get_attribute("state").get_raw_fd();
        wait::wait(fd, cond, timeout)
    }

    /// Wait while the `state` is in the vector `self.get_state()` or the `timeout` is reached.
    /// If the `timeout` is `None` it will wait an infinite time.
    fn wait_while(&self, state: &str, timeout: Option<Duration>) -> bool {
        let cond = || {
            self.get_state()
                .unwrap_or_else(|_| vec![])
                .iter()
                .all(|s| s != state)
        };
        self.wait(cond, timeout)
    }

    /// Wait until the `state` is in the vector `self.get_state()` or the `timeout` is reached.
    /// If the `timeout` is `None` it will wait an infinite time.
    fn wait_until(&self, state: &str, timeout: Option<Duration>) -> bool {
        let cond = || {
            self.get_state()
                .unwrap_or_else(|_| vec![])
                .iter()
                .any(|s| s == state)
        };
        self.wait(cond, timeout)
    }

    /// Wait until the motor is not moving or the timeout is reached.
    /// This is euqal to `wait_until(STATE_RUNNING, timeout)`
    /// If the `timeout` is `None` it will wait an infinite time.
    fn wait_until_not_moving(&self, timeout: Option<Duration>) -> bool {
        self.wait_while(STATE_RUNNING, timeout)
    }
}