1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
use super::super::*;

/// IPv6 fragment header.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Ipv6FragmentHeader {
    /// IP protocol number specifying the next header or transport layer protocol.
    ///
    /// See [IpNumber] or [ip_number] for a definition of the known values.
    pub next_header: IpNumber,
    /// Offset of the current IP payload relative to the start of the fragmented
    /// packet payload.
    pub fragment_offset: IpFragOffset,
    /// True if more fragment packets will follow. False if this is the last packet.
    pub more_fragments: bool,
    /// Identifcation value generated by the source.
    pub identification: u32,
}

impl Ipv6FragmentHeader {
    /// Length of the serialized header.
    pub const LEN: usize = 8;

    /// Create a new fragmentation header with the given parameters.
    ///
    /// Note that the `fragment_offset` can only support values between 0 and 0x1fff (inclusive).
    pub const fn new(
        next_header: IpNumber,
        fragment_offset: IpFragOffset,
        more_fragments: bool,
        identification: u32,
    ) -> Ipv6FragmentHeader {
        Ipv6FragmentHeader {
            next_header,
            fragment_offset,
            more_fragments,
            identification,
        }
    }

    /// Read an Ipv6FragmentHeader from a slice and return the header & unused parts of the slice.
    pub fn from_slice(slice: &[u8]) -> Result<(Ipv6FragmentHeader, &[u8]), err::LenError> {
        let s = Ipv6FragmentHeaderSlice::from_slice(slice)?;
        let rest = &slice[8..];
        let header = s.to_header();
        Ok((header, rest))
    }

    /// Read an fragment header from the current reader position.
    #[cfg(feature = "std")]
    #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
    pub fn read<T: std::io::Read + std::io::Seek + Sized>(
        reader: &mut T,
    ) -> Result<Ipv6FragmentHeader, std::io::Error> {
        let buffer = {
            let mut buffer: [u8; 8] = [0; 8];
            reader.read_exact(&mut buffer)?;
            buffer
        };

        Ok(Ipv6FragmentHeader {
            next_header: IpNumber(buffer[0]),
            fragment_offset: unsafe {
                // SAFE as the resulting number is guaranteed to have at most
                // 13 bits.
                IpFragOffset::new_unchecked(u16::from_be_bytes([
                    (buffer[2] >> 3) & 0b0001_1111u8,
                    ((buffer[2] << 5) & 0b1110_0000u8) | (buffer[3] & 0b0001_1111u8),
                ]))
            },
            more_fragments: 0 != buffer[3] & 0b1000_0000u8,
            identification: u32::from_be_bytes([buffer[4], buffer[5], buffer[6], buffer[7]]),
        })
    }

    /// Read an fragment header from the current reader position.
    #[cfg(feature = "std")]
    #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
    pub fn read_limited<T: std::io::Read + std::io::Seek + Sized>(
        reader: &mut crate::io::LimitedReader<T>,
    ) -> Result<Ipv6FragmentHeader, crate::err::io::LimitedReadError> {
        use err::Layer;

        // set layer so errors contain the correct layer & offset
        reader.start_layer(Layer::Ipv6FragHeader);

        let buffer = {
            let mut buffer: [u8; 8] = [0; 8];
            reader.read_exact(&mut buffer)?;
            buffer
        };

        Ok(Ipv6FragmentHeader {
            next_header: IpNumber(buffer[0]),
            fragment_offset: unsafe {
                // SAFE as the resulting number is guaranteed to have at most
                // 13 bits.
                IpFragOffset::new_unchecked(u16::from_be_bytes([
                    (buffer[2] >> 3) & 0b0001_1111u8,
                    ((buffer[2] << 5) & 0b1110_0000u8) | (buffer[3] & 0b0001_1111u8),
                ]))
            },
            more_fragments: 0 != buffer[3] & 0b1000_0000u8,
            identification: u32::from_be_bytes([buffer[4], buffer[5], buffer[6], buffer[7]]),
        })
    }

    /// Writes a given IPv6 fragment header to the current position.
    #[cfg(feature = "std")]
    #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
    pub fn write<T: std::io::Write + Sized>(&self, writer: &mut T) -> Result<(), std::io::Error> {
        writer.write_all(&self.to_bytes())
    }

    /// Length of the header in bytes.
    #[inline]
    pub fn header_len(&self) -> usize {
        Ipv6FragmentHeader::LEN
    }

    /// Checks if the fragment header actually fragments the packet.
    ///
    /// Returns false if the fragment offset is 0 and the more flag
    /// is not set. Otherwise returns true.
    ///
    /// [RFC8200](https://datatracker.ietf.org/doc/html/rfc8200) explicitly
    /// states that fragment headers that don't fragment the packet payload are
    /// allowed. See the following quote from
    /// RFC8200 page 32:
    ///
    /// > Revised the text to handle the case of fragments that are whole
    /// > datagrams (i.e., both the Fragment Offset field and the M flag
    /// > are zero).  If received, they should be processed as a
    /// > reassembled packet.  Any other fragments that match should be
    /// > processed independently.  The Fragment creation process was
    /// > modified to not create whole datagram fragments (Fragment
    /// > Offset field and the M flag are zero).  See
    /// > [RFC6946](https://datatracker.ietf.org/doc/html/6946) and
    /// > [RFC8021](https://datatracker.ietf.org/doc/html/rfc8021) for more
    /// > information."
    ///
    /// ```
    /// use etherparse::{Ipv6FragmentHeader, ip_number::UDP};
    ///
    /// // offset 0 & no more fragments result in an unfragmented payload
    /// {
    ///     let header = Ipv6FragmentHeader::new(UDP, 0.try_into().unwrap(), false, 123);
    ///     assert!(false == header.is_fragmenting_payload());
    /// }
    ///
    /// // offset 0 & but more fragments will come -> fragmented
    /// {
    ///     let header = Ipv6FragmentHeader::new(UDP, 0.try_into().unwrap(), true, 123);
    ///     assert!(header.is_fragmenting_payload());
    /// }
    ///
    /// // offset non zero & no more fragments will come -> fragmented
    /// {
    ///     let header = Ipv6FragmentHeader::new(UDP, 1.try_into().unwrap(), false, 123);
    ///     assert!(header.is_fragmenting_payload());
    /// }
    /// ```
    #[inline]
    pub fn is_fragmenting_payload(&self) -> bool {
        self.more_fragments || (0 != self.fragment_offset.value())
    }

    /// Returns the serialized form of the header as a statically
    /// sized byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; 8] {
        let fo_be: [u8; 2] = self.fragment_offset.value().to_be_bytes();
        let id_be = self.identification.to_be_bytes();
        [
            self.next_header.0,
            0,
            (((fo_be[0] << 3) & 0b1111_1000u8) | ((fo_be[1] >> 5) & 0b0000_0111u8)),
            ((fo_be[1] & 0b0001_1111u8)
                | if self.more_fragments {
                    0b1000_0000u8
                } else {
                    0
                }),
            id_be[0],
            id_be[1],
            id_be[2],
            id_be[3],
        ]
    }
}

#[cfg(test)]
mod test {
    use crate::{test_gens::*, *};
    use alloc::{format, vec::Vec};
    use proptest::prelude::*;
    use std::io::Cursor;

    proptest! {
        #[test]
        fn debug(input in ipv6_fragment_any()) {
            assert_eq!(
                &format!(
                    "Ipv6FragmentHeader {{ next_header: {:?}, fragment_offset: {:?}, more_fragments: {}, identification: {} }}",
                    input.next_header,
                    input.fragment_offset,
                    input.more_fragments,
                    input.identification
                ),
                &format!("{:?}", input)
            );
        }
    }

    proptest! {
        #[test]
        fn clone_eq(input in ipv6_fragment_any()) {
            assert_eq!(input, input.clone());
        }
    }

    proptest! {
        #[test]
        fn new(
            next_header in ip_number_any(),
            fragment_offset in 0..IpFragOffset::MAX_U16,
            more_fragments in any::<bool>(),
            identification in any::<u32>(),
        ) {
            let a = Ipv6FragmentHeader::new(
                next_header,
                fragment_offset.try_into().unwrap(),
                more_fragments,
                identification
            );
            assert_eq!(next_header, a.next_header);
            assert_eq!(fragment_offset, a.fragment_offset.value());
            assert_eq!(more_fragments, a.more_fragments);
            assert_eq!(identification, a.identification);
        }
    }

    proptest! {
        #[test]
        fn from_slice(
            input in ipv6_fragment_any(),
            dummy_data in proptest::collection::vec(any::<u8>(), 0..20)
        ) {
            // serialize
            let mut buffer: Vec<u8> = Vec::with_capacity(8 + dummy_data.len());
            input.write(&mut buffer).unwrap();
            buffer.extend(&dummy_data[..]);

            // calls with a valid result
            {
                let (result, rest) = Ipv6FragmentHeader::from_slice(&buffer[..]).unwrap();
                assert_eq!(input, result);
                assert_eq!(&buffer[8..], rest);
            }
            // call with not enough data in the slice
            for len in 0..Ipv6FragmentHeader::LEN {
                assert_eq!(
                    Ipv6FragmentHeader::from_slice(&buffer[0..len]).unwrap_err(),
                    err::LenError{
                        required_len: Ipv6FragmentHeader::LEN,
                        len: len,
                        len_source: LenSource::Slice,
                        layer: err::Layer::Ipv6FragHeader,
                        layer_start_offset: 0,
                    }
                );
            }
        }
    }

    proptest! {
        #[test]
        fn read(
            input in ipv6_fragment_any(),
            dummy_data in proptest::collection::vec(any::<u8>(), 0..20)
        ) {
            use std::io::ErrorKind;

            // serialize
            let mut buffer: Vec<u8> = Vec::with_capacity(8 + dummy_data.len());
            input.write(&mut buffer).unwrap();
            buffer.extend(&dummy_data[..]);

            // calls with a valid result
            {
                let mut cursor = Cursor::new(&buffer);
                let result = Ipv6FragmentHeader::read(&mut cursor).unwrap();
                assert_eq!(input, result);
                assert_eq!(cursor.position(), 8);
            }

            // call with not enough data in the slice
            for len in 0..Ipv6FragmentHeader::LEN {
                let mut cursor = Cursor::new(&buffer[0..len]);
                assert_eq!(
                    Ipv6FragmentHeader::read(&mut cursor)
                    .unwrap_err()
                    .kind(),
                    ErrorKind::UnexpectedEof
                );
            }
        }
    }

    proptest! {
        #[test]
        fn write(input in ipv6_fragment_any()) {

            // normal write
            {
                let mut buffer = Vec::with_capacity(8);
                input.write(&mut buffer).unwrap();
                assert_eq!(
                    &buffer,
                    &input.to_bytes()
                );
            }

            // not enough memory for write
            for len in 0..Ipv6FragmentHeader::LEN {
                let mut buffer = [0u8;Ipv6FragmentHeader::LEN];
                let mut cursor = Cursor::new(&mut buffer[..len]);
                assert!(
                    input.write(&mut cursor).is_err()
                );
            }
        }
    }

    proptest! {
        #[test]
        fn header_len(input in ipv6_fragment_any()) {
            assert_eq!(8, input.header_len());
        }
    }

    proptest! {
        #[test]
        fn is_fragmenting_payload(
            non_zero_offset in 1u16..0b0001_1111_1111_1111u16,
            identification in any::<u32>(),
            next_header in ip_number_any(),

        ) {
            // negative case
            {
                let header = Ipv6FragmentHeader {
                    next_header,
                    fragment_offset: 0.try_into().unwrap(),
                    more_fragments: false,
                    identification
                };
                assert!(false == header.is_fragmenting_payload());
            }
            // positive case (non zero offset)
            {
                let header = Ipv6FragmentHeader {
                    next_header,
                    fragment_offset: non_zero_offset.try_into().unwrap(),
                    more_fragments: false,
                    identification
                };
                assert!(header.is_fragmenting_payload());
            }

            // positive case (more fragments)
            {
                let header = Ipv6FragmentHeader {
                    next_header,
                    fragment_offset: 0.try_into().unwrap(),
                    more_fragments: true,
                    identification
                };
                assert!(header.is_fragmenting_payload());
            }

            // positive case (non zero offset & more fragments)
            {
                let header = Ipv6FragmentHeader {
                    next_header,
                    fragment_offset: non_zero_offset.try_into().unwrap(),
                    more_fragments: true,
                    identification
                };
                assert!(header.is_fragmenting_payload());
            }
        }
    }

    proptest! {
        #[test]
        fn to_bytes(input in ipv6_fragment_any()) {

            // normal write
            {
                let fragment_offset_be = input.fragment_offset.value().to_be_bytes();
                let id_be = input.identification.to_be_bytes();
                assert_eq!(
                    &input.to_bytes(),
                    &[
                        input.next_header.0,
                        0,
                        (
                            (fragment_offset_be[0] << 3 & 0b1111_1000u8) |
                            (fragment_offset_be[1] >> 5 & 0b0000_0111u8)
                        ),
                        (
                            (fragment_offset_be[1] & 0b0001_1111u8) |
                            if input.more_fragments {
                                0b1000_0000u8
                            } else {
                                0u8
                            }
                        ),
                        id_be[0],
                        id_be[1],
                        id_be[2],
                        id_be[3],
                    ]
                );
            }
        }
    }
}