essential_vm/vm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
//! The VM state machine, used to drive forward execution.
use crate::{
error::{ExecError, OpError},
future, Access, BytecodeMapped, BytecodeMappedLazy, Gas, GasLimit, LazyCache, Memory, Op,
OpAccess, OpGasCost, Repeat, Stack, StateRead,
};
/// The operation execution state of the VM.
#[derive(Debug, Default, PartialEq)]
pub struct Vm {
/// The program counter, i.e. index of the current operation within the program.
pub pc: usize,
/// The stack machine.
pub stack: Stack,
/// The memory for temporary storage of words.
pub memory: Memory,
/// The repeat stack.
pub repeat: Repeat,
/// Lazily cached data for the VM.
pub cache: LazyCache,
}
impl Vm {
/// Execute the given operations from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// This is a wrapper around [`Vm::exec`] that expects operation access in
/// the form of a `&[Op]`.
///
/// If memory bloat is a concern, consider using the [`Vm::exec_bytecode`]
/// or [`Vm::exec_bytecode_iter`] methods which allow for providing a more
/// compact representation of the operations in the form of mapped bytecode.
pub async fn exec_ops<'a, S>(
&mut self,
ops: &[Op],
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, ExecError<S::Error>>
where
S: StateRead,
{
self.exec(access, state_read, ops, op_gas_cost, gas_limit)
.await
}
/// Execute the given mapped bytecode from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// This is a wrapper around [`Vm::exec`] that expects operation access in
/// the form of [`&BytecodeMapped`][BytecodeMapped].
///
/// This can be a more memory efficient alternative to [`Vm::exec_ops`] due
/// to the compact representation of operations in the form of bytecode and
/// indices.
pub async fn exec_bytecode<'a, S, B>(
&mut self,
bytecode_mapped: &BytecodeMapped<B>,
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, ExecError<S::Error>>
where
S: StateRead,
B: core::ops::Deref<Target = [u8]>,
{
self.exec(access, state_read, bytecode_mapped, op_gas_cost, gas_limit)
.await
}
/// Execute the given bytecode from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// The given bytecode will be mapped lazily during execution. This
/// can be more efficient than pre-mapping the bytecode and using
/// [`Vm::exec_bytecode`] in the case that execution may fail early.
///
/// However, successful execution still requires building the full
/// [`BytecodeMapped`] instance internally. So if bytecode has already been
/// mapped, [`Vm::exec_bytecode`] should be preferred.
pub async fn exec_bytecode_iter<'a, S, I>(
&mut self,
bytecode_iter: I,
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, ExecError<S::Error>>
where
S: StateRead,
I: IntoIterator<Item = u8>,
I::IntoIter: Unpin,
{
let bytecode_lazy = BytecodeMappedLazy::new(bytecode_iter);
self.exec(access, state_read, bytecode_lazy, op_gas_cost, gas_limit)
.await
}
/// Execute over the given operation access from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// The type requirements for the `op_access` argument can make this
/// finicky to use directly. You may prefer one of the convenience methods:
///
/// - [`Vm::exec_ops`]
/// - [`Vm::exec_bytecode`]
/// - [`Vm::exec_bytecode_iter`]
pub async fn exec<'a, S, OA>(
&mut self,
access: Access<'a>,
state_read: &S,
op_access: OA,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, ExecError<S::Error>>
where
S: StateRead,
OA: OpAccess<Op = Op> + Unpin,
OA::Error: Into<OpError<S::Error>>,
{
future::exec(self, access, state_read, op_access, op_gas_cost, gas_limit).await
}
}