1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
use crate::{
asm::Op,
error::{OpAsyncError, OpError, OutOfGasError, StateReadError},
state_read::{self, StateReadFuture},
step_op_sync, Access, ContentAddress, Gas, GasLimit, OpAccess, OpAsync, OpAsyncResult,
OpGasCost, OpKind, StateRead, Vm,
};
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
/// A future that when polled attempts to make progress on VM execution.
///
/// This poll implementation steps forward the VM by the stored operations,
/// handling synchronous and asynchronous operations differently:
///
/// - For synchronous operations, it directly steps the VM to execute the
/// operation.
/// - For asynchronous operations, it creates a future that will complete
/// the operation and temporarily takes ownership of the VM. This future
/// is stored in `pending_op` until it's ready.
///
/// This type should not be constructed directly. Instead, it is used as a part
/// of the implementation of [`Vm::exec`] and exposed publicly for documentation
/// of its behaviour.
///
/// ## Yield Behavior
///
/// Execution yields in two scenarios:
///
/// - **Asynchronous Operations**: When an async operation is encountered,
/// the method yields until the operation's future is ready. This allows
/// other tasks to run while awaiting the asynchronous operation to
/// complete.
/// - **Gas Yield Limit Reached**: The method also yields based on a gas
/// spending limit. If executing an operation causes `gas.spent` to exceed
/// `gas.next_yield_threshold`, the method yields to allow the scheduler
/// to run other tasks. This prevents long or complex sequences of
/// operations from monopolizing CPU time.
///
/// Upon yielding, the method ensures that the state of the VM and the
/// execution context (including gas counters and any pending operations)
/// are preserved for when the `poll` method is called again.
///
/// ## Error Handling
///
/// Errors encountered during operation execution result in an immediate
/// return of `Poll::Ready(Err(...))`, encapsulating the error within a
/// `StateReadError`. This includes errors from:
///
/// - Synchronous operations that fail during their execution.
/// - Asynchronous operations, where errors are handled once the future
/// resolves.
///
/// The VM's program counter will remain on the operation that caused the
/// error.
///
/// ## Completion
///
/// The future completes (`Poll::Ready(Ok(...))`) when all operations have
/// been executed and no more work remains. At this point, ownership over
/// the VM is dropped and the total amount of gas spent during execution is
/// returned. Attempting to poll the future after completion will panic.
pub struct ExecFuture<'a, S, OA, OG>
where
S: StateRead,
{
/// Access to solution data.
access: Access<'a>,
/// Access to state reading.
state_read: &'a S,
/// Access to operations.
op_access: OA,
/// A function that, given a reference to an op, returns its gas cost.
op_gas_cost: &'a OG,
/// Store the VM in an `Option` so that we can `take` it upon future completion.
vm: Option<&'a mut Vm>,
/// Gas spent during execution so far.
gas: GasExec,
/// In the case that the operation future is pending (i.e a state read is in
/// progress), we store the future here.
pending_op: Option<PendingOp<'a, S>>,
}
/// Track gas limits and expenditure for execution.
struct GasExec {
/// The total and yield gas limits.
limit: GasLimit,
/// The gas threshold at which the future should yield.
next_yield_threshold: Gas,
/// The total gas limit.
spent: Gas,
}
/// Encapsulates a pending operation.
struct PendingOp<'a, S>
where
S: StateRead,
{
// The future representing the operation in progress.
future: StepOpAsyncFuture<'a, S>,
/// Total gas that will have been spent upon completing the op.
next_spent: Gas,
}
/// The future type produced when performing an async operation.
enum StepOpAsyncFuture<'a, S>
where
S: StateRead,
{
/// The async `StateRead::WordRange` (or `WordRangeExtern`) operation future.
StateRead(StateReadFuture<'a, S>),
}
impl From<GasLimit> for GasExec {
/// Initialise gas execution tracking from a given gas limit.
fn from(limit: GasLimit) -> Self {
GasExec {
spent: 0,
next_yield_threshold: limit.per_yield,
limit,
}
}
}
// Allow for consuming the async operation future to retake ownership of the stored `&mut Vm`.
impl<'a, S> From<StepOpAsyncFuture<'a, S>> for &'a mut Vm
where
S: StateRead,
{
fn from(future: StepOpAsyncFuture<'a, S>) -> Self {
match future {
StepOpAsyncFuture::StateRead(future) => future.vm,
}
}
}
impl<'a, S, OA, OG> Future for ExecFuture<'a, S, OA, OG>
where
S: StateRead,
OA: OpAccess<Op = Op> + Unpin,
OG: OpGasCost,
OA::Error: Into<OpError<S::Error>>,
{
/// Returns a result with the total gas spent.
type Output = Result<Gas, StateReadError<S::Error>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
// Poll the async operation future if there is one pending.
let vm = match self.pending_op.as_mut() {
None => self.vm.take().expect("future polled after completion"),
Some(pending) => {
let res = match Pin::new(&mut pending.future).poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(ready) => ready,
};
// Drop the future now we've resumed, retake ownership of the `&mut Vm`.
let pending = self.pending_op.take().expect("guaranteed `Some`");
let next_spent = pending.next_spent;
let vm: &'a mut Vm = pending.future.into();
// Handle the op result.
#[cfg(feature = "tracing")]
trace_op_res(&mut self.op_access, &*vm, res.as_ref());
match res {
Ok(new_pc) => vm.pc = new_pc,
Err(err) => {
let err = StateReadError::Op(vm.pc, err.into());
return Poll::Ready(Err(err));
}
};
// Update gas spent and threshold now that we've resumed.
self.gas.spent = next_spent;
self.gas.next_yield_threshold =
self.gas.spent.saturating_add(self.gas.limit.per_yield);
vm
}
};
// Step forward the virtual machine by the next operation.
while let Some(res) = self.op_access.op_access(vm.pc) {
// Handle any potential operation access error.
let op = match res {
Ok(op) => op,
Err(err) => {
let err = StateReadError::Op(vm.pc, err.into());
return Poll::Ready(Err(err));
}
};
let op_gas = self.op_gas_cost.op_gas_cost(&op);
// Check that the operation wouldn't exceed gas limit.
let next_spent = match self
.gas
.spent
.checked_add(op_gas)
.filter(|&spent| spent <= self.gas.limit.total)
.ok_or_else(|| out_of_gas(&self.gas, op_gas))
.map_err(|err| StateReadError::Op(vm.pc, err.into()))
{
Err(err) => return Poll::Ready(Err(err)),
Ok(next_spent) => next_spent,
};
let res = match OpKind::from(op) {
OpKind::Sync(op) => step_op_sync(op, self.access, vm),
OpKind::Async(op) => {
// Async op takes ownership of the VM and returns it upon future completion.
let contract_addr = self
.access
.solution
.this_data()
.predicate_to_solve
.contract
.clone();
let pc = vm.pc;
let future = match step_op_async(op, contract_addr, self.state_read, vm) {
Err(err) => {
let err = StateReadError::Op(pc, err.into());
return Poll::Ready(Err(err));
}
Ok(fut) => fut,
};
self.pending_op = Some(PendingOp { future, next_spent });
cx.waker().wake_by_ref();
return Poll::Pending;
}
};
#[cfg(feature = "tracing")]
trace_op_res(&mut self.op_access, &*vm, res.as_ref());
// Handle any errors.
let opt_new_pc = match res {
Ok(opt) => opt,
Err(err) => {
return Poll::Ready(Err(StateReadError::Op(vm.pc, err.into())));
}
};
// Operation successful, so update gas spent.
self.gas.spent = next_spent;
// Update the program counter, or exit if we're done.
match opt_new_pc {
Some(new_pc) => vm.pc = new_pc,
// `None` is returned after encountering a `Halt` operation.
None => return Poll::Ready(Ok(self.gas.spent)),
}
// Yield if we've reached our gas limit.
if self.gas.next_yield_threshold <= self.gas.spent {
self.gas.next_yield_threshold =
self.gas.spent.saturating_add(self.gas.limit.per_yield);
self.vm = Some(vm);
cx.waker().wake_by_ref();
return Poll::Pending;
}
}
// Programs must complete with a `Halt` operation.
Poll::Ready(Err(StateReadError::PcOutOfRange(vm.pc)))
}
}
impl<'vm, S> Future for StepOpAsyncFuture<'vm, S>
where
S: StateRead,
{
// Future returns a result with the new program counter.
type Output = OpAsyncResult<usize, S::Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let (prev_pc, res) = match *self {
Self::StateRead(ref mut future) => {
let pc = future.vm.pc;
match Pin::new(future).poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(res) => (pc, res),
}
}
};
// Every operation besides control flow steps forward program counter by 1.
let new_pc = prev_pc.checked_add(1).ok_or(OpAsyncError::PcOverflow)?;
let res = res.map(|()| new_pc);
Poll::Ready(res)
}
}
/// Creates the VM execution future.
pub(crate) fn exec<'a, S, OA, OG>(
vm: &'a mut Vm,
access: Access<'a>,
state_read: &'a S,
op_access: OA,
op_gas_cost: &'a OG,
gas_limit: GasLimit,
) -> ExecFuture<'a, S, OA, OG>
where
S: StateRead,
OA: OpAccess<Op = Op> + Unpin,
OG: OpGasCost,
OA::Error: Into<OpError<S::Error>>,
{
ExecFuture {
access,
state_read,
op_access,
op_gas_cost,
vm: Some(vm),
gas: GasExec::from(gas_limit),
pending_op: None,
}
}
/// Step forward the given `Vm` with the given asynchronous operation.
///
/// Returns a future representing the completion of the operation.
fn step_op_async<'a, S>(
op: OpAsync,
contract_addr: ContentAddress,
state_read: &'a S,
vm: &'a mut Vm,
) -> OpAsyncResult<StepOpAsyncFuture<'a, S>, S::Error>
where
S: StateRead,
{
match op {
OpAsync::StateReadKeyRange => {
let future = state_read::key_range(state_read, &contract_addr, &mut *vm)?;
Ok(StepOpAsyncFuture::StateRead(future))
}
OpAsync::StateReadKeyRangeExt => {
let future = state_read::key_range_ext(state_read, &mut *vm)?;
Ok(StepOpAsyncFuture::StateRead(future))
}
}
}
/// Shorthand for constructing an `OutOfGasError`.
fn out_of_gas(exec: &GasExec, op_gas: Gas) -> OutOfGasError {
OutOfGasError {
spent: exec.spent,
limit: exec.limit.total,
op_gas,
}
}
/// Trace the operation at the given program counter.
///
/// In the success case, also emits the resulting stack.
///
/// In the error case, emits a debug log with the error.
#[cfg(feature = "tracing")]
fn trace_op_res<OA, T, E>(oa: &mut OA, vm: &Vm, op_res: Result<T, E>)
where
OA: OpAccess,
OA::Op: core::fmt::Debug,
E: core::fmt::Display,
{
let op = oa
.op_access(vm.pc)
.expect("must exist as retrieved previously")
.expect("must exist as retrieved previously");
let pc_op = format!("0x{:02X}: {op:?}", vm.pc);
match op_res {
Ok(_) => {
tracing::trace!(
"{pc_op}\n ├── {:?}\n └── {:?}",
&vm.stack,
&vm.state_slots_mut
)
}
Err(ref err) => {
tracing::trace!("{pc_op}");
tracing::debug!("{err}");
}
}
}