1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
//! The essential state read VM implementation.
//!
//! ## Reading State
//!
//! The primary entrypoint for this crate is the [`Vm` type][Vm].
//!
//! The `Vm` allows for executing operations that read state and apply any
//! necessary operations in order to form the final, expected state slot layout
//! within the VM's [`Memory`]. The `Vm`'s memory can be accessed directly
//! from the `Vm`, or the `Vm` can be consumed and state slots returned with
//! [`Vm::into_state_slots`].
//!
//! ## Executing Ops
//!
//! There are three primary methods available for executing operations:
//!
//! - [`Vm::exec_ops`]
//! - [`Vm::exec_bytecode`]
//! - [`Vm::exec_bytecode_iter`]
//!
//! Each have slightly different performance implications, so be sure to read
//! the docs before selecting a method.
//!
//! ## Execution Future
//!
//! The `Vm::exec_*` functions all return `Future`s that not only yield on
//! async operations, but yield based on a user-specified gas limit too. See the
//! [`ExecFuture`] docs for further details on the implementation.
#![deny(missing_docs, unsafe_code)]
use constraint::{ProgramControlFlow, Repeat};
#[doc(inline)]
pub use error::{OpAsyncResult, OpResult, OpSyncResult, StateReadResult, StateSlotsResult};
use error::{OpError, OpSyncError, StateReadError, StateSlotsError};
#[doc(inline)]
pub use essential_constraint_vm::{
self as constraint, Access, OpAccess, SolutionAccess, Stack, StateSlotSlice, StateSlots,
};
#[doc(inline)]
pub use essential_state_asm as asm;
use essential_state_asm::Op;
pub use essential_types as types;
use essential_types::{ContentAddress, Word};
#[doc(inline)]
pub use future::ExecFuture;
pub use state_read::StateRead;
pub use state_slots_mut::StateSlotsMut;
pub mod error;
mod future;
mod state_read;
mod state_slots_mut;
/// The operation execution state of the State Read VM.
#[derive(Debug, Default, PartialEq)]
pub struct Vm {
/// The program counter, i.e. index of the current operation within the program.
pub pc: usize,
/// The stack machine.
pub stack: Stack,
/// The memory for temporary storage of words.
pub temp_memory: essential_constraint_vm::Memory,
/// The repeat stack.
pub repeat: Repeat,
/// The state slots that will be written to by this program.
pub state_slots_mut: StateSlotsMut,
}
/// Unit used to measure gas.
pub type Gas = u64;
/// Shorthand for the `BytecodeMapped` type representing a mapping to/from state read [`Op`]s.
pub type BytecodeMapped<Bytes = Vec<u8>> = constraint::BytecodeMapped<Op, Bytes>;
/// Shorthand for the `BytecodeMappedSlice` type for mapping [`Op`]s.
pub type BytecodeMappedSlice<'a> = constraint::BytecodeMappedSlice<'a, Op>;
/// Shorthand for the `BytecodeMappedLazy` type for mapping [`Op`]s.
pub type BytecodeMappedLazy<I> = constraint::BytecodeMappedLazy<Op, I>;
/// Gas limits.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct GasLimit {
/// The amount that may be spent synchronously until the execution future should yield.
pub per_yield: Gas,
/// The total amount of gas that may be spent.
pub total: Gas,
}
/// Distinguish between sync and async ops to ease `Future` implementation.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub(crate) enum OpKind {
/// Operations that yield immediately.
Sync(OpSync),
/// Operations returning a future.
Async(OpAsync),
}
/// The contract of operations performed synchronously.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub(crate) enum OpSync {
/// All operations available to the constraint checker.
Constraint(asm::Constraint),
/// Operations for interacting with mutable state slots.
StateSlots(asm::StateSlots),
}
/// The contract of operations that are performed asynchronously.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub(crate) enum OpAsync {
/// Read a range of values from state starting at the key.
StateReadKeyRange,
/// Read a range of values from external state starting at the key.
StateReadKeyRangeExt,
}
/// A mapping from an operation to its gas cost.
pub trait OpGasCost {
/// The gas cost associated with the given op.
fn op_gas_cost(&self, op: &Op) -> Gas;
}
impl GasLimit {
/// The default value used for the `per_yield` limit.
// TODO: Adjust this to match recommended poll time limit on supported validator
// hardware.
pub const DEFAULT_PER_YIELD: Gas = 4_096;
/// Unlimited gas limit with default gas-per-yield.
pub const UNLIMITED: Self = Self {
per_yield: Self::DEFAULT_PER_YIELD,
total: Gas::MAX,
};
}
impl Vm {
/// Execute the given operations from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// This is a wrapper around [`Vm::exec`] that expects operation access in
/// the form of a `&[Op]`.
///
/// If memory bloat is a concern, consider using the [`Vm::exec_bytecode`]
/// or [`Vm::exec_bytecode_iter`] methods which allow for providing a more
/// compact representation of the operations in the form of mapped bytecode.
pub async fn exec_ops<'a, S>(
&mut self,
ops: &[Op],
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, StateReadError<S::Error>>
where
S: StateRead,
{
self.exec(access, state_read, ops, op_gas_cost, gas_limit)
.await
}
/// Execute the given mapped bytecode from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// This is a wrapper around [`Vm::exec`] that expects operation access in
/// the form of [`&BytecodeMapped`][BytecodeMapped].
///
/// This can be a more memory efficient alternative to [`Vm::exec_ops`] due
/// to the compact representation of operations in the form of bytecode and
/// indices.
pub async fn exec_bytecode<'a, S, B>(
&mut self,
bytecode_mapped: &BytecodeMapped<B>,
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, StateReadError<S::Error>>
where
S: StateRead,
B: core::ops::Deref<Target = [u8]>,
{
self.exec(access, state_read, bytecode_mapped, op_gas_cost, gas_limit)
.await
}
/// Execute the given bytecode from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// The given bytecode will be mapped lazily during execution. This
/// can be more efficient than pre-mapping the bytecode and using
/// [`Vm::exec_bytecode`] in the case that execution may fail early.
///
/// However, successful execution still requires building the full
/// [`BytecodeMapped`] instance internally. So if bytecode has already been
/// mapped, [`Vm::exec_bytecode`] should be preferred.
pub async fn exec_bytecode_iter<'a, S, I>(
&mut self,
bytecode_iter: I,
access: Access<'a>,
state_read: &S,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, StateReadError<S::Error>>
where
S: StateRead,
I: IntoIterator<Item = u8>,
I::IntoIter: Unpin,
{
let bytecode_lazy = BytecodeMappedLazy::new(bytecode_iter);
self.exec(access, state_read, bytecode_lazy, op_gas_cost, gas_limit)
.await
}
/// Execute over the given operation access from the current state of the VM.
///
/// Upon reaching a `Halt` operation or reaching the end of the operation
/// sequence, returns the gas spent and the `Vm` will be left in the
/// resulting state.
///
/// The type requirements for the `op_access` argument can make this
/// finicky to use directly. You may prefer one of the convenience methods:
///
/// - [`Vm::exec_ops`]
/// - [`Vm::exec_bytecode`]
/// - [`Vm::exec_bytecode_iter`]
pub async fn exec<'a, S, OA>(
&mut self,
access: Access<'a>,
state_read: &S,
op_access: OA,
op_gas_cost: &impl OpGasCost,
gas_limit: GasLimit,
) -> Result<Gas, StateReadError<S::Error>>
where
S: StateRead,
OA: OpAccess<Op = Op> + Unpin,
OA::Error: Into<OpError<S::Error>>,
{
future::exec(self, access, state_read, op_access, op_gas_cost, gas_limit).await
}
/// Consumes the `Vm` and returns the read state slots.
///
/// The returned slots correspond directly with the current memory content.
pub fn into_state_slots(self) -> Vec<Vec<Word>> {
self.state_slots_mut.into()
}
}
impl From<Op> for OpKind {
fn from(op: Op) -> Self {
match op {
Op::Constraint(op) => OpKind::Sync(OpSync::Constraint(op)),
Op::StateSlots(op) => OpKind::Sync(OpSync::StateSlots(op)),
Op::KeyRange => OpKind::Async(OpAsync::StateReadKeyRange),
Op::KeyRangeExtern => OpKind::Async(OpAsync::StateReadKeyRangeExt),
}
}
}
impl<F> OpGasCost for F
where
F: Fn(&Op) -> Gas,
{
fn op_gas_cost(&self, op: &Op) -> Gas {
(*self)(op)
}
}
/// Step forward the VM by a single synchronous operation.
///
/// Returns a `Some(usize)` representing the new program counter resulting from
/// this step, or `None` in the case that execution has halted.
pub(crate) fn step_op_sync(op: OpSync, access: Access, vm: &mut Vm) -> OpSyncResult<Option<usize>> {
match op {
OpSync::Constraint(op) => {
let Vm {
stack,
repeat,
pc,
temp_memory,
..
} = vm;
match constraint::step_op(access, op, stack, temp_memory, *pc, repeat)? {
Some(ProgramControlFlow::Pc(pc)) => return Ok(Some(pc)),
Some(ProgramControlFlow::Halt) => return Ok(None),
None => (),
}
}
OpSync::StateSlots(op) => step_op_state_slots(op, &mut *vm)?,
}
// Every operation besides control flow steps forward program counter by 1.
let new_pc = vm.pc.checked_add(1).ok_or(OpSyncError::PcOverflow)?;
Ok(Some(new_pc))
}
/// Step forward state reading by the given state slot operation.
pub(crate) fn step_op_state_slots(op: asm::StateSlots, vm: &mut Vm) -> OpSyncResult<()> {
match op {
asm::StateSlots::AllocSlots => state_slots_mut::alloc_slots(vm),
asm::StateSlots::Clear => state_slots_mut::clear(vm),
asm::StateSlots::ClearRange => state_slots_mut::clear_range(vm),
asm::StateSlots::Length => state_slots_mut::length(vm),
asm::StateSlots::ValueLen => state_slots_mut::value_len(vm),
asm::StateSlots::Load => state_slots_mut::load(vm),
asm::StateSlots::Store => state_slots_mut::store(vm),
asm::StateSlots::LoadWord => state_slots_mut::load_word(vm),
asm::StateSlots::StoreWord => state_slots_mut::store_word(vm),
}
}