essential_constraint_vm/
access.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//! Access operation implementations.

use crate::{
    cached::LazyCache,
    error::{AccessError, MissingAccessArgError},
    repeat::Repeat,
    sets::encode_set,
    types::convert::bool_from_word,
    OpResult, Stack,
};
use essential_constraint_asm::Word;
use essential_types::{
    convert::{bytes_from_word, u8_32_from_word_4, word_4_from_u8_32},
    solution::{Solution, SolutionData, SolutionDataIndex},
    Key, Value,
};
use std::collections::HashSet;

#[cfg(test)]
mod dec_vars;
#[cfg(test)]
mod num_slots;
#[cfg(test)]
mod predicate_exists;
#[cfg(test)]
mod state;
#[cfg(test)]
mod test_utils;
#[cfg(test)]
mod tests;

/// All necessary solution data and state access required to check an individual predicate.
#[derive(Clone, Copy, Debug)]
pub struct Access<'a> {
    /// All necessary solution data access required to check an individual predicate.
    pub solution: SolutionAccess<'a>,
    /// The pre and post mutation state slot values for the predicate being solved.
    pub state_slots: StateSlots<'a>,
}

/// All necessary solution data access required to check an individual predicate.
#[derive(Clone, Copy, Debug)]
pub struct SolutionAccess<'a> {
    /// The input data for each predicate being solved within the solution.
    ///
    /// We require *all* predicate solution data in order to handle checking
    /// predicate exists.
    pub data: &'a [SolutionData],
    /// Checking is performed for one predicate at a time. This index refers to
    /// the checked predicate's associated solution data within `data`.
    pub index: usize,
    /// The keys being proposed for mutation for the predicate.
    pub mutable_keys: &'a HashSet<&'a [Word]>,
}

/// The pre and post mutation state slot values for the predicate being solved.
#[derive(Clone, Copy, Debug)]
pub struct StateSlots<'a> {
    /// Predicate state slot values before the solution's mutations are applied.
    pub pre: &'a StateSlotSlice,
    /// Predicate state slot values after the solution's mutations are applied.
    pub post: &'a StateSlotSlice,
}

/// The state slots declared within the predicate.
pub type StateSlotSlice = [Vec<Word>];

impl<'a> SolutionAccess<'a> {
    /// A shorthand for constructing a `SolutionAccess` instance for checking
    /// the predicate at the given index within the given solution.
    ///
    /// This constructor assumes that the given mutable keys contract is correct
    /// for this solution. It is not checked by this function for performance.
    pub fn new(
        solution: &'a Solution,
        predicate_index: SolutionDataIndex,
        mutable_keys: &'a HashSet<&[Word]>,
    ) -> Self {
        Self {
            data: &solution.data,
            index: predicate_index.into(),
            mutable_keys,
        }
    }

    /// The solution data associated with the predicate currently being checked.
    ///
    /// **Panics** in the case that `self.index` is out of range of the `self.data` slice.
    pub fn this_data(&self) -> &SolutionData {
        self.data
            .get(self.index)
            .expect("predicate index out of range of solution data")
    }
}

impl<'a> StateSlots<'a> {
    /// Empty state slots.
    pub const EMPTY: Self = Self {
        pre: &[],
        post: &[],
    };
}

/// A helper for collecting all mutable keys that are proposed for mutation for
/// the predicate at the given index.
///
/// Specifically, assists in calculating the `mut_keys_len` for
/// `SolutionAccess`, as this is equal to the `.count()` of the returned iterator.
///
/// **Note:** In the case that the given solution is invalid and contains multiple
/// mutations to the same key, the same key will be yielded multiple times.
pub fn mut_keys(
    solution: &Solution,
    predicate_index: SolutionDataIndex,
) -> impl Iterator<Item = &Key> {
    solution.data[predicate_index as usize]
        .state_mutations
        .iter()
        .map(|m| &m.key)
}

/// Get the mutable keys as slices
pub fn mut_keys_slices(
    solution: &Solution,
    predicate_index: SolutionDataIndex,
) -> impl Iterator<Item = &[Word]> {
    solution.data[predicate_index as usize]
        .state_mutations
        .iter()
        .map(|m| m.key.as_ref())
}

/// Get the contract of mutable keys for this predicate.
pub fn mut_keys_set(solution: &Solution, predicate_index: SolutionDataIndex) -> HashSet<&[Word]> {
    mut_keys_slices(solution, predicate_index).collect()
}

/// `Access::DecisionVar` implementation.
pub(crate) fn decision_var(this_decision_vars: &[Value], stack: &mut Stack) -> OpResult<()> {
    let len = stack.pop().map_err(|_| MissingAccessArgError::DecVarLen)?;
    let value_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::DecVarValueIx)?;
    let slot_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::DecVarSlotIx)?;
    let slot_ix =
        usize::try_from(slot_ix).map_err(|_| AccessError::DecisionSlotIxOutOfBounds(slot_ix))?;
    let range = range_from_start_len(value_ix, len).ok_or(AccessError::InvalidAccessRange)?;
    let words = resolve_decision_var_range(this_decision_vars, slot_ix, range)?;
    stack.extend(words.iter().copied())?;
    Ok(())
}

/// `Access::DecisionVarLen` implementation.
pub(crate) fn decision_var_len(this_decision_vars: &[Value], stack: &mut Stack) -> OpResult<()> {
    let slot_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::DecVarSlotIx)?;
    let slot_ix =
        usize::try_from(slot_ix).map_err(|_| AccessError::DecisionSlotIxOutOfBounds(slot_ix))?;
    let len = resolve_decision_var_len(this_decision_vars, slot_ix)?;
    let w = Word::try_from(len).map_err(|_| AccessError::DecisionLengthTooLarge(len))?;
    stack
        .push(w)
        .expect("Can't fail because 1 is popped and 1 is pushed");
    Ok(())
}

/// `Access::MutKeys` implementation.
pub(crate) fn push_mut_keys(solution: SolutionAccess, stack: &mut Stack) -> OpResult<()> {
    encode_set(
        solution.mutable_keys.iter().map(|k| k.iter().copied()),
        stack,
    )
}

/// `Access::State` implementation.
pub(crate) fn state(slots: StateSlots, stack: &mut Stack) -> OpResult<()> {
    let delta = stack.pop().map_err(|_| MissingAccessArgError::StateDelta)?;
    let len = stack.pop().map_err(|_| MissingAccessArgError::StateLen)?;
    let value_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::StateValueIx)?;
    let slot_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::StateSlotIx)?;
    let values = state_slot_value_range(slots, slot_ix, value_ix, len, delta)?;
    stack.extend(values.iter().copied())?;
    Ok(())
}

/// `Access::StateLen` implementation.
pub(crate) fn state_len(slots: StateSlots, stack: &mut Stack) -> OpResult<()> {
    let delta = stack.pop().map_err(|_| MissingAccessArgError::StateDelta)?;
    let slot_ix = stack
        .pop()
        .map_err(|_| MissingAccessArgError::StateSlotIx)?;
    let slot = state_slot(slots, slot_ix, delta)?;
    let len =
        Word::try_from(slot.len()).map_err(|_| AccessError::StateValueTooLarge(slot.len()))?;
    stack
        .push(len)
        .expect("Can't fail because 2 are popped and 1 is pushed");
    Ok(())
}

/// `Access::ThisAddress` implementation.
pub(crate) fn this_address(data: &SolutionData, stack: &mut Stack) -> OpResult<()> {
    let words = word_4_from_u8_32(data.predicate_to_solve.predicate.0);
    stack.extend(words)?;
    Ok(())
}

/// `Access::ThisContractAddress` implementation.
pub(crate) fn this_contract_address(data: &SolutionData, stack: &mut Stack) -> OpResult<()> {
    let words = word_4_from_u8_32(data.predicate_to_solve.contract.0);
    stack.extend(words)?;
    Ok(())
}

pub(crate) fn repeat_counter(stack: &mut Stack, repeat: &Repeat) -> OpResult<()> {
    let counter = repeat.counter()?;
    Ok(stack.push(counter)?)
}

/// Implementation of the `Access::NumSlots` operation.
pub(crate) fn num_slots(
    stack: &mut Stack,
    state_slots: &StateSlots<'_>,
    decision_variables: &[Value],
) -> OpResult<()> {
    const DEC_VAR_SLOTS: Word = 0;
    const PRE_STATE_SLOTS: Word = 1;
    const POST_STATE_SLOTS: Word = 2;

    let which_slots = stack.pop()?;

    match which_slots {
        DEC_VAR_SLOTS => {
            let num_slots = Word::try_from(decision_variables.len())
                .map_err(|_| AccessError::SlotsLengthTooLarge(decision_variables.len()))?;
            stack.push(num_slots)?;
        }
        PRE_STATE_SLOTS => {
            let num_slots = Word::try_from(state_slots.pre.len())
                .map_err(|_| AccessError::SlotsLengthTooLarge(state_slots.pre.len()))?;
            stack.push(num_slots)?;
        }
        POST_STATE_SLOTS => {
            let num_slots = Word::try_from(state_slots.post.len())
                .map_err(|_| AccessError::SlotsLengthTooLarge(state_slots.post.len()))?;
            stack.push(num_slots)?;
        }
        _ => return Err(AccessError::InvalidSlotType(which_slots).into()),
    }
    Ok(())
}

/// Resolve a range of words at a decision variable slot.
///
/// Errors if the solution data or decision var indices are out of bounds.
pub(crate) fn resolve_decision_var_range(
    decision_variables: &[Value],
    slot_ix: usize,
    value_range_ix: core::ops::Range<usize>,
) -> Result<&[Word], AccessError> {
    decision_variables
        .get(slot_ix)
        .ok_or(AccessError::DecisionSlotIxOutOfBounds(slot_ix as Word))?
        .get(value_range_ix.clone())
        .ok_or(AccessError::DecisionValueRangeOutOfBounds(
            value_range_ix.start as Word,
            value_range_ix.end as Word,
        ))
}

/// Resolve the length of decision variable slot.
///
/// Errors if the solution data or decision var indices are out of bounds.
pub(crate) fn resolve_decision_var_len(
    decision_variables: &[Value],
    slot_ix: usize,
) -> Result<usize, AccessError> {
    decision_variables
        .get(slot_ix)
        .map(|slot| slot.len())
        .ok_or(AccessError::DecisionSlotIxOutOfBounds(slot_ix as Word))
}

pub(crate) fn predicate_exists(
    stack: &mut Stack,
    data: &[SolutionData],
    cache: &LazyCache,
) -> OpResult<()> {
    let hash = u8_32_from_word_4(stack.pop4()?);
    let found = cache.get_dec_var_hashes(data).contains(&hash);
    stack.push(found as Word)?;
    Ok(())
}

pub(crate) fn init_predicate_exists(
    data: &[SolutionData],
) -> impl Iterator<Item = essential_types::Hash> + '_ {
    data.iter().map(|d| {
        let data = d
            .decision_variables
            .iter()
            .flat_map(|slot| {
                Some(slot.len() as Word)
                    .into_iter()
                    .chain(slot.iter().cloned())
            })
            .chain(word_4_from_u8_32(d.predicate_to_solve.contract.0))
            .chain(word_4_from_u8_32(d.predicate_to_solve.predicate.0))
            .flat_map(bytes_from_word)
            .collect::<Vec<_>>();
        sha256(&data)
    })
}

fn sha256(bytes: &[u8]) -> [u8; 32] {
    use sha2::{Digest, Sha256};
    let mut hasher = Sha256::new();
    hasher.update(bytes);
    let result: [u8; 32] = hasher.finalize().into();
    result
}

fn state_slot(slots: StateSlots, slot_ix: Word, delta: Word) -> OpResult<&Vec<Word>> {
    let delta = bool_from_word(delta).ok_or(AccessError::InvalidStateSlotDelta(delta))?;
    let slots = state_slots_from_delta(slots, delta);
    let ix = usize::try_from(slot_ix).map_err(|_| AccessError::StateSlotIxOutOfBounds(slot_ix))?;
    let slot = slots
        .get(ix)
        .ok_or(AccessError::StateSlotIxOutOfBounds(slot_ix))?;
    Ok(slot)
}

fn state_slot_value_range(
    slots: StateSlots,
    slot_ix: Word,
    value_ix: Word,
    len: Word,
    delta: Word,
) -> OpResult<&[Word]> {
    let delta = bool_from_word(delta).ok_or(AccessError::InvalidStateSlotDelta(delta))?;
    let slots = state_slots_from_delta(slots, delta);
    let slot_ix =
        usize::try_from(slot_ix).map_err(|_| AccessError::StateSlotIxOutOfBounds(slot_ix))?;
    let range = range_from_start_len(value_ix, len).ok_or(AccessError::InvalidAccessRange)?;
    let values = slots
        .get(slot_ix)
        .ok_or(AccessError::StateSlotIxOutOfBounds(slot_ix as Word))?
        .get(range.clone())
        .ok_or(AccessError::StateValueRangeOutOfBounds(
            range.start as Word,
            range.end as Word,
        ))?;
    Ok(values)
}

fn range_from_start_len(start: Word, len: Word) -> Option<std::ops::Range<usize>> {
    let start = usize::try_from(start).ok()?;
    let len = usize::try_from(len).ok()?;
    let end = start.checked_add(len)?;
    Some(start..end)
}

fn state_slots_from_delta(slots: StateSlots, delta: bool) -> &StateSlotSlice {
    if delta {
        slots.post
    } else {
        slots.pre
    }
}