1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use crate::ram;
use esp8266::SPI0;
use void::Void;
pub trait SPI0Ext {
fn flash(self) -> ESPFlash;
}
impl SPI0Ext for SPI0 {
fn flash(self) -> ESPFlash {
ESPFlash { spi: self }
}
}
#[cfg(not(feature = "all_in_ram"))]
mod cache;
#[cfg(feature = "all_in_ram")]
mod cache {
use core::ops::{Deref, DerefMut};
use esp8266::SPI0;
pub(crate) fn cache_enable(_spi0: &mut SPI0, _mb: u8) {
}
pub(super) struct CachePauseGuard<'a> {
spi: &'a mut SPI0,
}
impl<'a> CachePauseGuard<'a> {
pub fn new(spi: &'a mut SPI0) -> Self {
CachePauseGuard { spi }
}
}
impl Deref for CachePauseGuard<'_> {
type Target = SPI0;
fn deref(&self) -> &Self::Target {
self.spi
}
}
impl DerefMut for CachePauseGuard<'_> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.spi
}
}
}
pub(crate) use cache::cache_enable;
use cache::CachePauseGuard;
use core::ptr::{read_volatile, write_volatile};
pub struct ESPFlash {
spi: SPI0,
}
#[inline]
fn write_enable(spi: &mut SPI0) {
spi.spi_addr.write(|w| unsafe { w.bits(0) });
spi.spi_cmd.write(|w| w.spi_write_enable().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
}
#[inline]
fn get_status(spi: &mut SPI0) -> u32 {
spi.spi_addr.write(|w| unsafe { w.bits(0) });
spi.spi_cmd.write(|w| w.spi_read_sr().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
spi.spi_rd_status.read().bits()
}
impl ESPFlash {
#[ram]
pub fn erase_sectors(&mut self, addr: u32, sector_count: usize) -> Result<(), Void> {
let mut spi = CachePauseGuard::new(&mut self.spi);
write_enable(&mut spi);
for i in 0..sector_count {
spi.spi_addr
.write(|w| unsafe { w.address().bits(addr + i as u32) });
spi.spi_cmd.write(|w| w.spi_se().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
while get_status(&mut spi) & 1 > 0 {}
}
Ok(())
}
#[ram]
pub fn erase_all(&mut self) -> Result<(), Void> {
let mut spi = CachePauseGuard::new(&mut self.spi);
write_enable(&mut spi);
spi.spi_cmd.write(|w| w.spi_ce().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
while get_status(&mut spi) & 1 > 0 {}
Ok(())
}
#[ram]
pub fn write_bytes(&mut self, mut addr: u32, data: &[u8]) -> Result<(), Void> {
let mut spi = CachePauseGuard::new(&mut self.spi);
let (head, body, tail) = unsafe { data.align_to::<u32>() };
addr = write_unaligned(&mut spi, addr, head);
addr = write_aligned(&mut spi, addr, body);
write_unaligned(&mut spi, addr, tail);
Ok(())
}
#[ram]
pub fn read(&mut self, mut addr: u32, buf: &mut [u8]) -> Result<(), Void> {
let mut spi = CachePauseGuard::new(&mut self.spi);
let (head, body, tail) = unsafe { buf.align_to_mut::<u32>() };
addr = read_unaligned(&mut spi, addr, head);
addr = read_aligned(&mut spi, addr, body);
read_unaligned(&mut spi, addr, tail);
Ok(())
}
}
#[ram]
fn write_unaligned(spi: &mut SPI0, mut addr: u32, data: &[u8]) -> u32 {
for byte in data {
write_enable(spi);
spi.spi_addr
.write(|w| unsafe { w.address().bits(addr).size().bits(1) });
spi.spi_w0.write(|w| unsafe { w.bits(*byte as u32) });
spi.spi_cmd.write(|w| w.spi_pp().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
while get_status(spi) & 1 > 0 {}
addr += 1;
}
addr
}
#[ram]
fn write_aligned(spi: &mut SPI0, mut addr: u32, data: &[u32]) -> u32 {
for chunk in data.chunks(16) {
write_enable(spi);
let byte_len = chunk.len() * 4;
spi.spi_addr
.write(|w| unsafe { w.address().bits(addr).size().bits(byte_len as u8) });
let base = spi.spi_w0.as_ptr();
for (i, num) in chunk.iter().enumerate() {
unsafe {
write_volatile(base.add(i), *num);
}
}
spi.spi_cmd.write(|w| w.spi_pp().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
while get_status(spi) & 1 > 0 {}
addr += byte_len as u32;
}
addr
}
#[ram]
fn read_unaligned(spi: &mut SPI0, mut addr: u32, data: &mut [u8]) -> u32 {
for byte in data.iter_mut() {
spi.spi_addr
.write(|w| unsafe { w.address().bits(addr).size().bits(1) });
spi.spi_cmd.write(|w| w.spi_read().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
*byte = spi.spi_w0.read().bits() as u8;
addr += 1;
}
addr
}
#[ram]
fn read_aligned(spi: &mut SPI0, mut addr: u32, data: &mut [u32]) -> u32 {
for chunk in data.chunks_mut(15) {
let byte_len = chunk.len() * 4;
spi.spi_addr
.write(|w| unsafe { w.address().bits(addr).size().bits(byte_len as u8) });
spi.spi_cmd.write(|w| w.spi_read().set_bit());
while spi.spi_cmd.read().bits() > 0 {}
let base = spi.spi_w0.as_ptr();
for (i, num) in chunk.iter_mut().enumerate() {
unsafe {
*num = read_volatile(base.add(i));
}
}
addr += byte_len as u32;
}
addr
}