1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
//! `no_std` HAL for the ESP32-S3 from Espressif.
//!
//! Implements a number of the traits defined by the various packages in the
//! [embedded-hal] repository.
//!
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal
//!
//! ### Cargo Features
//!
//! - `async` - Enable support for asynchronous operation, with interfaces
//!   provided by [embedded-hal-async] and [embedded-io-async]
//! - `debug` - Enable debug features in the HAL (used for development)
//! - `defmt` - Enable [`defmt::Format`] on certain types
//! - `eh1` - Implement the traits defined in the `1.0.0-xxx` pre-releases of
//!   [embedded-hal], [embedded-hal-nb], and [embedded-io]
//! - `embassy` - Enable support for [embassy], a modern asynchronous embedded
//!   framework. One of `embassy-time-*` features must also be enabled when
//!   using this feature.
//! - `embassy-executor-interrupt` - Use the multicore-aware interrupt-mode
//!   embassy executor
//! - `embassy-executor-thread` - Use the multicore-aware thread-mode embassy
//!   executor
//! - `embassy-time-systick` - Enable the [embassy] time driver using the
//!   `SYSTIMER` peripheral. The `SYSTIMER` peripheral has three alarms
//!   available for use
//! - `embassy-time-timg0` - Enable the [embassy] time driver using the `TIMG0`
//!   peripheral. The `TIMG0` peripheral has two alarms available for use
//! - `embassy-integrated-timers` - Uses hardware timers as alarms for the
//!   executors. Using this feature limits the number of executors to the number
//!   of hardware alarms provided by the time driver
//! - `embassy-generic-queue-N` (where `N` can be `8`, `16`, `32`, `64` or
//!   `128`) - Use a generic timer queue of size `N` for the executors' timer
//!   queues. Using this feature can expand the number of executors you can use
//!   to `N`
//! - `log` - enable log output using the `log` crate
//! - `opsram-2m` - Use externally connected Octal PSRAM (2MB)
//! - `opsram-4m` - Use externally connected Octal PSRAM (4MB)
//! - `opsram-8m` - Use externally connected Octal PSRAM (8MB)
//! - `opsram-16m`- Use externally connected Octal PSRAM (16MB)
//! - `psram-2m` - Use externally connected PSRAM (2MB)
//! - `psram-4m` - Use externally connected PSRAM (4MB)
//! - `psram-8m` - Use externally connected PSRAM (8MB)
//! - `rt` - Runtime support
//! - `ufmt` - Implement the [`ufmt_write::uWrite`] trait for the UART driver
//! - `vectored` - Enable interrupt vectoring
//!
//! #### Default Features
//!
//! The `rt`, `vectored` and `embassy-integrated-timers` features are enabled by
//! default.
//!
//! [embedded-hal-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-async
//! [embedded-io-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io-async
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal
//! [embedded-hal-nb]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-nb
//! [embedded-io]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io
//! [embassy]: https://github.com/embassy-rs/embassy
//! [`ufmt_write::uWrite`]: https://docs.rs/ufmt-write/latest/ufmt_write/trait.uWrite.html
//! [`defmt::Format`]: https://docs.rs/defmt/0.3.5/defmt/trait.Format.html
#![no_std]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]

pub use esp_hal_common::*;

#[cfg(feature = "rt")]
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn configure_cpu_caches() {
    // this is just the bare minimum we need to run code from flash
    // consider implementing more advanced configurations
    // see https://github.com/apache/incubator-nuttx/blob/master/arch/xtensa/src/esp32s3/esp32s3_start.c

    extern "C" {
        fn rom_config_instruction_cache_mode(
            cfg_cache_size: u32,
            cfg_cache_ways: u8,
            cfg_cache_line_size: u8,
        );
    }

    // ideally these should be configurable
    const CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE: u32 = 0x4000; // ESP32S3_INSTRUCTION_CACHE_16KB
    const CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS: u8 = 8; // ESP32S3_INSTRUCTION_CACHE_8WAYS
    const CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE: u8 = 32; // ESP32S3_INSTRUCTION_CACHE_LINE_32B

    // Configure the mode of instruction cache: cache size, cache line size.
    rom_config_instruction_cache_mode(
        CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE,
        CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS,
        CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE,
    );
}

/// Function initializes ESP32S3 specific memories (RTC slow and fast) and
/// then calls original Reset function
///
/// ENTRY point is defined in memory.x
/// *Note: the pre_init function is called in the original reset handler
/// after the initializations done in this function*
#[cfg(feature = "rt")]
#[doc(hidden)]
#[no_mangle]
#[link_section = ".rwtext"]
pub unsafe extern "C" fn ESP32Reset() -> ! {
    configure_cpu_caches();

    // These symbols come from `memory.x`
    extern "C" {
        static mut _rtc_fast_bss_start: u32;
        static mut _rtc_fast_bss_end: u32;

        static mut _rtc_slow_bss_start: u32;
        static mut _rtc_slow_bss_end: u32;

        static mut _stack_start_cpu0: u32;
    }

    // set stack pointer to end of memory: no need to retain stack up to this point
    esp_hal_common::xtensa_lx::set_stack_pointer(&mut _stack_start_cpu0);

    // copying data from flash to various data segments is done by the bootloader
    // initialization to zero needs to be done by the application

    // Initialize RTC RAM
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_fast_bss_start, &mut _rtc_fast_bss_end);
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_slow_bss_start, &mut _rtc_slow_bss_end);

    // continue with default reset handler
    esp_hal_common::xtensa_lx_rt::Reset();
}

/// The ESP32 has a first stage bootloader that handles loading program data
/// into the right place therefore we skip loading it again.
#[doc(hidden)]
#[no_mangle]
#[rustfmt::skip]
pub extern "Rust" fn __init_data() -> bool {
    false
}

#[export_name = "__post_init"]
unsafe fn post_init() {
    use esp_hal_common::{
        peripherals::{RTC_CNTL, TIMG0, TIMG1},
        timer::Wdt,
    };

    // RTC domain must be enabled before we try to disable
    let mut rtc = Rtc::new(RTC_CNTL::steal());
    rtc.rwdt.disable();

    Wdt::<TIMG0>::set_wdt_enabled(false);
    Wdt::<TIMG1>::set_wdt_enabled(false);
}