1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
//! `no_std` HAL for the ESP32-S3 from Espressif.
//!
//! Implements a number of the traits defined by the various packages in the
//! [embedded-hal] repository.
//!
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal
//!
//! ### Cargo Features
//!
//! - `async` - Enable support for asynchronous operation, with interfaces
//!   provided by [embedded-hal-async] and [embedded-io-async]
//! - `debug` - Enable debug features in the HAL (used for development)
//! - `defmt` - Enable [`defmt::Format`] on certain types
//! - `direct-boot` - Use the direct boot image format
//! - `eh1` - Implement the traits defined in the `1.0.0-xxx` pre-releases of
//!   [embedded-hal], [embedded-hal-nb], and [embedded-io]
//! - `embassy` - Enable support for [embassy], a modern asynchronous embedded
//!   framework
//! - `embassy-executor-interrupt` - Use the multicore-aware interrupt-mode
//!   embassy executor
//! - `embassy-executor-thread` - Use the multicore-aware thread-mode embassy
//!   executor
//! - `embassy-time-systick` - Enable the [embassy] time driver using the
//!   `SYSTIMER` peripheral
//! - `embassy-time-timg0` - Enable the [embassy] time driver using the `TIMG0`
//!   peripheral
//! - `log` - enable log output using the `log` crate
//! - `opsram_2m` - Use externally connected Octal PSRAM (2MB)
//! - `opsram_4m` - Use externally connected Octal PSRAM (4MB)
//! - `opsram_8m` - Use externally connected Octal PSRAM (8MB)
//! - `psram_2m` - Use externally connected PSRAM (2MB)
//! - `psram_4m` - Use externally connected PSRAM (4MB)
//! - `psram_8m` - Use externally connected PSRAM (8MB)
//! - `rt` - Runtime support
//! - `ufmt` - Implement the [`ufmt_write::uWrite`] trait for the UART driver
//! - `vectored` - Enable interrupt vectoring
//!
//! #### Default Features
//!
//! The `rt` and `vectored` features are enabled by default.
//!
//! [embedded-hal-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-async
//! [embedded-io-async]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io-async
//! [embedded-hal]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal
//! [embedded-hal-nb]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-hal-nb
//! [embedded-io]: https://github.com/rust-embedded/embedded-hal/tree/master/embedded-io
//! [embassy]: https://github.com/embassy-rs/embassy
//! [`ufmt_write::uWrite`]: https://docs.rs/ufmt-write/latest/ufmt_write/trait.uWrite.html
//! [`defmt::Format`]: https://docs.rs/defmt/0.3.5/defmt/trait.Format.html
//!
//! ### Supported Image Formats
//!
//! This HAL supports building multiple different application image formats. You
//! can read about each below.
//!
//! The ESP-IDF Bootloader format is used unless some other format is specified
//! via its feature.
//!
//! #### ESP-IDF Bootloader
//!
//! Use the second-stage bootloader from [ESP-IDF] and its associated
//! application image format. See the [App Image Format] documentation for more
//! information about this format.
//!
//! [ESP-IDF]: https://github.com/espressif/esp-idf
//! [App Image Format]: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/app_image_format.html
//!
//! #### Direct Boot
//!
//! This device additionally supports direct-boot, which allows an application
//! to be executed directly from flash, without using the second-stage
//! bootloader. For more information please see the
//! [esp32c3-direct-boot-example] in the Espressif organization on GitHub.
//!
//! [esp32c3-direct-boot-example]: https://github.com/espressif/esp32c3-direct-boot-example

#![no_std]
#![cfg_attr(
    feature = "direct-boot",
    feature(asm_experimental_arch),
    feature(naked_functions)
)]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]

pub use esp_hal_common::*;

/// Common module for analog functions
pub mod analog {
    pub use esp_hal_common::analog::{AvailableAnalog, SensExt};
}

#[cfg(all(feature = "rt", feature = "direct-boot"))]
#[doc(hidden)]
#[no_mangle]
#[link_section = ".init"]
#[naked]
unsafe extern "C" fn init() {
    core::arch::asm!("call0 startup_direct_boot", options(noreturn));
}

#[cfg(all(feature = "rt", feature = "direct-boot"))]
#[doc(hidden)]
#[no_mangle]
pub unsafe fn startup_direct_boot() -> ! {
    // These symbols are from `memory.x`
    extern "C" {
        static mut _rtc_fast_bss_start: u32;
        static mut _rtc_fast_bss_end: u32;

        static mut _rtc_slow_bss_start: u32;
        static mut _rtc_slow_bss_end: u32;

        // Boundaries of the .rtc_fast.text section
        static mut _rtc_fast_text_start: u32;
        static mut _rtc_fast_text_end: u32;
        static mut _irtc_fast_text: u32;

        // Boundaries of the .rtc_fast.data section
        static mut _rtc_fast_data_start: u32;
        static mut _rtc_fast_data_end: u32;
        static mut _irtc_fast_data: u32;

        // Boundaries of the .rtc_slow.text section
        static mut _rtc_slow_text_start: u32;
        static mut _rtc_slow_text_end: u32;
        static mut _irtc_slow_text: u32;

        // Boundaries of the .rtc_slow.data section
        static mut _rtc_slow_data_start: u32;
        static mut _rtc_slow_data_end: u32;
        static mut _irtc_slow_data: u32;

        static mut _stack_end_cpu0: u32;
    }

    // set stack pointer to end of memory: no need to retain stack up to this point
    xtensa_lx::set_stack_pointer(&mut _stack_end_cpu0);

    // copy rtc data from flash to destinations
    r0::init_data(
        &mut _rtc_fast_data_start,
        &mut _rtc_fast_data_end,
        &_irtc_fast_data,
    );

    r0::init_data(
        &mut _rtc_fast_text_start,
        &mut _rtc_fast_text_end,
        &_irtc_fast_text,
    );

    r0::init_data(
        &mut _rtc_slow_data_start,
        &mut _rtc_slow_data_end,
        &_irtc_slow_data,
    );

    r0::init_data(
        &mut _rtc_slow_text_start,
        &mut _rtc_slow_text_end,
        &_irtc_slow_text,
    );

    // Initialize RTC RAM
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_fast_bss_start, &mut _rtc_fast_bss_end);
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_slow_bss_start, &mut _rtc_slow_bss_end);

    // first of all copy rwtext
    extern "C" {
        // Boundaries of the .iram section
        static mut _srwtext: u32;
        static mut _erwtext: u32;
        static mut _irwtext: u32;
    }
    r0::init_data(&mut _srwtext, &mut _erwtext, &_irwtext);

    // do some configurations for compatability with the 2nd stage bootloader
    // this is a workaround and ideally we should deal with these settings in other
    // places
    (&*crate::peripherals::TIMG0::PTR)
        .int_ena_timers
        .modify(|_, w| w.t0_int_ena().set_bit().t1_int_ena().set_bit());
    (&*crate::peripherals::TIMG1::PTR)
        .int_ena_timers
        .modify(|_, w| w.t0_int_ena().set_bit().t1_int_ena().set_bit());

    (&*crate::peripherals::RTC_CNTL::PTR)
        .swd_wprotect
        .write(|w| w.bits(0x8f1d312a));
    (&*crate::peripherals::RTC_CNTL::PTR)
        .swd_conf
        .modify(|_, w| w.swd_disable().set_bit());
    (&*crate::peripherals::RTC_CNTL::PTR)
        .swd_wprotect
        .write(|w| w.bits(0));

    (&*crate::peripherals::SYSTEM::PTR)
        .sysclk_conf
        .modify(|_, w| w.soc_clk_sel().bits(1));

    esp_hal_common::xtensa_lx_rt::Reset();
}

#[cfg(feature = "rt")]
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn configure_cpu_caches() {
    // this is just the bare minimum we need to run code from flash
    // consider implementing more advanced configurations
    // see https://github.com/apache/incubator-nuttx/blob/master/arch/xtensa/src/esp32s3/esp32s3_start.c

    extern "C" {
        fn rom_config_instruction_cache_mode(
            cfg_cache_size: u32,
            cfg_cache_ways: u8,
            cfg_cache_line_size: u8,
        );
    }

    // ideally these should be configurable
    const CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE: u32 = 0x4000; // ESP32S3_INSTRUCTION_CACHE_16KB
    const CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS: u8 = 8; // ESP32S3_INSTRUCTION_CACHE_8WAYS
    const CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE: u8 = 32; // ESP32S3_INSTRUCTION_CACHE_LINE_32B

    // Configure the mode of instruction cache: cache size, cache line size.
    rom_config_instruction_cache_mode(
        CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE,
        CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS,
        CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE,
    );
}

/// Function initializes ESP32S3 specific memories (RTC slow and fast) and
/// then calls original Reset function
///
/// ENTRY point is defined in memory.x
/// *Note: the pre_init function is called in the original reset handler
/// after the initializations done in this function*
#[cfg(feature = "rt")]
#[doc(hidden)]
#[no_mangle]
#[link_section = ".rwtext"]
pub unsafe extern "C" fn ESP32Reset() -> ! {
    configure_cpu_caches();

    // These symbols come from `memory.x`
    extern "C" {
        static mut _rtc_fast_bss_start: u32;
        static mut _rtc_fast_bss_end: u32;

        static mut _rtc_slow_bss_start: u32;
        static mut _rtc_slow_bss_end: u32;

        static mut _stack_end_cpu0: u32;
    }

    // set stack pointer to end of memory: no need to retain stack up to this point
    esp_hal_common::xtensa_lx::set_stack_pointer(&mut _stack_end_cpu0);

    // copying data from flash to various data segments is done by the bootloader
    // initialization to zero needs to be done by the application

    // Initialize RTC RAM
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_fast_bss_start, &mut _rtc_fast_bss_end);
    esp_hal_common::xtensa_lx_rt::zero_bss(&mut _rtc_slow_bss_start, &mut _rtc_slow_bss_end);

    // continue with default reset handler
    esp_hal_common::xtensa_lx_rt::Reset();
}

/// The ESP32 has a first stage bootloader that handles loading program data
/// into the right place therefore we skip loading it again.
#[doc(hidden)]
#[no_mangle]
#[rustfmt::skip]
pub extern "Rust" fn __init_data() -> bool {
    #[cfg(feature = "direct-boot")]
    let res = true;

    #[cfg(not(feature = "direct-boot"))]
    let res = false;

    res
}

#[export_name = "__post_init"]
unsafe fn post_init() {
    use esp_hal_common::{
        peripherals::{RTC_CNTL, TIMG0, TIMG1},
        timer::Wdt,
    };

    // RTC domain must be enabled before we try to disable
    let mut rtc = Rtc::new(RTC_CNTL::steal());
    rtc.rwdt.disable();

    Wdt::<TIMG0>::set_wdt_enabled(false);
    Wdt::<TIMG1>::set_wdt_enabled(false);
}