#[doc = "Register `CH%s_CONF0` reader"]
pub type R = crate::R<CH_CONF0_SPEC>;
#[doc = "Register `CH%s_CONF0` writer"]
pub type W = crate::W<CH_CONF0_SPEC>;
#[doc = "Field `TIMER_SEL` reader - This field is used to select one of timers for channel %s. 0: select timer0, 1: select timer1, 2: select timer2, 3: select timer3"]
pub type TIMER_SEL_R = crate::FieldReader;
#[doc = "Field `TIMER_SEL` writer - This field is used to select one of timers for channel %s. 0: select timer0, 1: select timer1, 2: select timer2, 3: select timer3"]
pub type TIMER_SEL_W<'a, REG, const O: u8> = crate::FieldWriter<'a, REG, 2, O>;
#[doc = "Field `SIG_OUT_EN` reader - Set this bit to enable signal output on channel %s."]
pub type SIG_OUT_EN_R = crate::BitReader;
#[doc = "Field `SIG_OUT_EN` writer - Set this bit to enable signal output on channel %s."]
pub type SIG_OUT_EN_W<'a, REG, const O: u8> = crate::BitWriter<'a, REG, O>;
#[doc = "Field `IDLE_LV` reader - This bit is used to control the output value when channel %s is inactive (when LEDC_SIG_OUT_EN_CH%s is 0)."]
pub type IDLE_LV_R = crate::BitReader;
#[doc = "Field `IDLE_LV` writer - This bit is used to control the output value when channel %s is inactive (when LEDC_SIG_OUT_EN_CH%s is 0)."]
pub type IDLE_LV_W<'a, REG, const O: u8> = crate::BitWriter<'a, REG, O>;
#[doc = "Field `PARA_UP` writer - This bit is used to update LEDC_HPOINT_CH%s, LEDC_DUTY_START_CH%s, LEDC_SIG_OUT_EN_CH%s, LEDC_TIMER_SEL_CH%s, LEDC_DUTY_NUM_CH%s, LEDC_DUTY_CYCLE_CH%s, LEDC_DUTY_SCALE_CH%s, LEDC_DUTY_INC_CH%s, and LEDC_OVF_CNT_EN_CH%s fields for channel %s, and will be automatically cleared by hardware."]
pub type PARA_UP_W<'a, REG, const O: u8> = crate::BitWriter<'a, REG, O>;
#[doc = "Field `OVF_NUM` reader - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
pub type OVF_NUM_R = crate::FieldReader<u16>;
#[doc = "Field `OVF_NUM` writer - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
pub type OVF_NUM_W<'a, REG, const O: u8> = crate::FieldWriter<'a, REG, 10, O, u16>;
#[doc = "Field `OVF_CNT_EN` reader - This bit is used to enable the ovf_cnt of channel %s."]
pub type OVF_CNT_EN_R = crate::BitReader;
#[doc = "Field `OVF_CNT_EN` writer - This bit is used to enable the ovf_cnt of channel %s."]
pub type OVF_CNT_EN_W<'a, REG, const O: u8> = crate::BitWriter<'a, REG, O>;
#[doc = "Field `OVF_CNT_RESET` writer - Set this bit to reset the ovf_cnt of channel %s."]
pub type OVF_CNT_RESET_W<'a, REG, const O: u8> = crate::BitWriter<'a, REG, O>;
impl R {
#[doc = "Bits 0:1 - This field is used to select one of timers for channel %s. 0: select timer0, 1: select timer1, 2: select timer2, 3: select timer3"]
#[inline(always)]
pub fn timer_sel(&self) -> TIMER_SEL_R {
TIMER_SEL_R::new((self.bits & 3) as u8)
}
#[doc = "Bit 2 - Set this bit to enable signal output on channel %s."]
#[inline(always)]
pub fn sig_out_en(&self) -> SIG_OUT_EN_R {
SIG_OUT_EN_R::new(((self.bits >> 2) & 1) != 0)
}
#[doc = "Bit 3 - This bit is used to control the output value when channel %s is inactive (when LEDC_SIG_OUT_EN_CH%s is 0)."]
#[inline(always)]
pub fn idle_lv(&self) -> IDLE_LV_R {
IDLE_LV_R::new(((self.bits >> 3) & 1) != 0)
}
#[doc = "Bits 5:14 - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
#[inline(always)]
pub fn ovf_num(&self) -> OVF_NUM_R {
OVF_NUM_R::new(((self.bits >> 5) & 0x03ff) as u16)
}
#[doc = "Bit 15 - This bit is used to enable the ovf_cnt of channel %s."]
#[inline(always)]
pub fn ovf_cnt_en(&self) -> OVF_CNT_EN_R {
OVF_CNT_EN_R::new(((self.bits >> 15) & 1) != 0)
}
}
#[cfg(feature = "impl-register-debug")]
impl core::fmt::Debug for R {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("CH_CONF0")
.field("timer_sel", &format_args!("{}", self.timer_sel().bits()))
.field("sig_out_en", &format_args!("{}", self.sig_out_en().bit()))
.field("idle_lv", &format_args!("{}", self.idle_lv().bit()))
.field("ovf_num", &format_args!("{}", self.ovf_num().bits()))
.field("ovf_cnt_en", &format_args!("{}", self.ovf_cnt_en().bit()))
.finish()
}
}
#[cfg(feature = "impl-register-debug")]
impl core::fmt::Debug for crate::generic::Reg<CH_CONF0_SPEC> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.read().fmt(f)
}
}
impl W {
#[doc = "Bits 0:1 - This field is used to select one of timers for channel %s. 0: select timer0, 1: select timer1, 2: select timer2, 3: select timer3"]
#[inline(always)]
#[must_use]
pub fn timer_sel(&mut self) -> TIMER_SEL_W<CH_CONF0_SPEC, 0> {
TIMER_SEL_W::new(self)
}
#[doc = "Bit 2 - Set this bit to enable signal output on channel %s."]
#[inline(always)]
#[must_use]
pub fn sig_out_en(&mut self) -> SIG_OUT_EN_W<CH_CONF0_SPEC, 2> {
SIG_OUT_EN_W::new(self)
}
#[doc = "Bit 3 - This bit is used to control the output value when channel %s is inactive (when LEDC_SIG_OUT_EN_CH%s is 0)."]
#[inline(always)]
#[must_use]
pub fn idle_lv(&mut self) -> IDLE_LV_W<CH_CONF0_SPEC, 3> {
IDLE_LV_W::new(self)
}
#[doc = "Bit 4 - This bit is used to update LEDC_HPOINT_CH%s, LEDC_DUTY_START_CH%s, LEDC_SIG_OUT_EN_CH%s, LEDC_TIMER_SEL_CH%s, LEDC_DUTY_NUM_CH%s, LEDC_DUTY_CYCLE_CH%s, LEDC_DUTY_SCALE_CH%s, LEDC_DUTY_INC_CH%s, and LEDC_OVF_CNT_EN_CH%s fields for channel %s, and will be automatically cleared by hardware."]
#[inline(always)]
#[must_use]
pub fn para_up(&mut self) -> PARA_UP_W<CH_CONF0_SPEC, 4> {
PARA_UP_W::new(self)
}
#[doc = "Bits 5:14 - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
#[inline(always)]
#[must_use]
pub fn ovf_num(&mut self) -> OVF_NUM_W<CH_CONF0_SPEC, 5> {
OVF_NUM_W::new(self)
}
#[doc = "Bit 15 - This bit is used to enable the ovf_cnt of channel %s."]
#[inline(always)]
#[must_use]
pub fn ovf_cnt_en(&mut self) -> OVF_CNT_EN_W<CH_CONF0_SPEC, 15> {
OVF_CNT_EN_W::new(self)
}
#[doc = "Bit 16 - Set this bit to reset the ovf_cnt of channel %s."]
#[inline(always)]
#[must_use]
pub fn ovf_cnt_reset(&mut self) -> OVF_CNT_RESET_W<CH_CONF0_SPEC, 16> {
OVF_CNT_RESET_W::new(self)
}
#[doc = "Writes raw bits to the register."]
#[inline(always)]
pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
self.bits = bits;
self
}
}
#[doc = "Configuration register 0 for channel %s\n\nYou can [`read`](crate::generic::Reg::read) this register and get [`ch_conf0::R`](R). You can [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`write_with_zero`](crate::generic::Reg::write_with_zero) this register using [`ch_conf0::W`](W). You can also [`modify`](crate::generic::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api)."]
pub struct CH_CONF0_SPEC;
impl crate::RegisterSpec for CH_CONF0_SPEC {
type Ux = u32;
}
#[doc = "`read()` method returns [`ch_conf0::R`](R) reader structure"]
impl crate::Readable for CH_CONF0_SPEC {}
#[doc = "`write(|w| ..)` method takes [`ch_conf0::W`](W) writer structure"]
impl crate::Writable for CH_CONF0_SPEC {
const ZERO_TO_MODIFY_FIELDS_BITMAP: Self::Ux = 0;
const ONE_TO_MODIFY_FIELDS_BITMAP: Self::Ux = 0;
}
#[doc = "`reset()` method sets CH%s_CONF0 to value 0"]
impl crate::Resettable for CH_CONF0_SPEC {
const RESET_VALUE: Self::Ux = 0;
}