1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#[doc = "Register `SPI_MEM_CTRL1` reader"]
pub type R = crate::R<SPI_MEM_CTRL1_SPEC>;
#[doc = "Register `SPI_MEM_CTRL1` writer"]
pub type W = crate::W<SPI_MEM_CTRL1_SPEC>;
#[doc = "Field `SPI_MEM_CLK_MODE` reader - SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3: SPI clock is alwasy on."]
pub type SPI_MEM_CLK_MODE_R = crate::FieldReader;
#[doc = "Field `SPI_MEM_CLK_MODE` writer - SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3: SPI clock is alwasy on."]
pub type SPI_MEM_CLK_MODE_W<'a, REG> = crate::FieldWriter<'a, REG, 2>;
#[doc = "Field `SPI_AR_SIZE0_1_SUPPORT_EN` reader - 1: MSPI supports ARSIZE 0~3. When ARSIZE =0~2, MSPI read address is 4*n and reply the real AXI read data back. 0: When ARSIZE 0~1, MSPI reply SLV_ERR."]
pub type SPI_AR_SIZE0_1_SUPPORT_EN_R = crate::BitReader;
#[doc = "Field `SPI_AR_SIZE0_1_SUPPORT_EN` writer - 1: MSPI supports ARSIZE 0~3. When ARSIZE =0~2, MSPI read address is 4*n and reply the real AXI read data back. 0: When ARSIZE 0~1, MSPI reply SLV_ERR."]
pub type SPI_AR_SIZE0_1_SUPPORT_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `SPI_AW_SIZE0_1_SUPPORT_EN` reader - 1: MSPI supports AWSIZE 0~3. 0: When AWSIZE 0~1, MSPI reply SLV_ERR."]
pub type SPI_AW_SIZE0_1_SUPPORT_EN_R = crate::BitReader;
#[doc = "Field `SPI_AW_SIZE0_1_SUPPORT_EN` writer - 1: MSPI supports AWSIZE 0~3. 0: When AWSIZE 0~1, MSPI reply SLV_ERR."]
pub type SPI_AW_SIZE0_1_SUPPORT_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `SPI_AXI_RDATA_BACK_FAST` reader - 1: Reply AXI read data to AXI bus when one AXI read beat data is available. 0: Reply AXI read data to AXI bus when all the read data is available."]
pub type SPI_AXI_RDATA_BACK_FAST_R = crate::BitReader;
#[doc = "Field `SPI_MEM_RRESP_ECC_ERR_EN` reader - 1: RRESP is SLV_ERR when there is a ECC error in AXI read data. 0: RRESP is OKAY when there is a ECC error in AXI read data. The ECC error information is recorded in SPI_MEM_ECC_ERR_ADDR_REG."]
pub type SPI_MEM_RRESP_ECC_ERR_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_RRESP_ECC_ERR_EN` writer - 1: RRESP is SLV_ERR when there is a ECC error in AXI read data. 0: RRESP is OKAY when there is a ECC error in AXI read data. The ECC error information is recorded in SPI_MEM_ECC_ERR_ADDR_REG."]
pub type SPI_MEM_RRESP_ECC_ERR_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `SPI_MEM_AR_SPLICE_EN` reader - Set this bit to enable AXI Read Splice-transfer."]
pub type SPI_MEM_AR_SPLICE_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_AW_SPLICE_EN` reader - Set this bit to enable AXI Write Splice-transfer."]
pub type SPI_MEM_AW_SPLICE_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_RAM0_EN` reader - When SPI_MEM_DUAL_RAM_EN is 0 and SPI_MEM_RAM0_EN is 1, only EXT_RAM0 will be accessed. When SPI_MEM_DUAL_RAM_EN is 0 and SPI_MEM_RAM0_EN is 0, only EXT_RAM1 will be accessed. When SPI_MEM_DUAL_RAM_EN is 1, EXT_RAM0 and EXT_RAM1 will be accessed at the same time."]
pub type SPI_MEM_RAM0_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_DUAL_RAM_EN` reader - Set this bit to enable DUAL-RAM mode, EXT_RAM0 and EXT_RAM1 will be accessed at the same time."]
pub type SPI_MEM_DUAL_RAM_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_FAST_WRITE_EN` reader - Set this bit to write data faster, do not wait write data has been stored in tx_bus_fifo_l2. It will wait 4*T_clk_ctrl to insure the write data has been stored in tx_bus_fifo_l2."]
pub type SPI_MEM_FAST_WRITE_EN_R = crate::BitReader;
#[doc = "Field `SPI_MEM_FAST_WRITE_EN` writer - Set this bit to write data faster, do not wait write data has been stored in tx_bus_fifo_l2. It will wait 4*T_clk_ctrl to insure the write data has been stored in tx_bus_fifo_l2."]
pub type SPI_MEM_FAST_WRITE_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `SPI_MEM_RXFIFO_RST` writer - The synchronous reset signal for SPI0 RX AFIFO and all the AES_MSPI SYNC FIFO to receive signals from AXI. Set this bit to reset these FIFO."]
pub type SPI_MEM_RXFIFO_RST_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `SPI_MEM_TXFIFO_RST` writer - The synchronous reset signal for SPI0 TX AFIFO and all the AES_MSPI SYNC FIFO to send signals to AXI. Set this bit to reset these FIFO."]
pub type SPI_MEM_TXFIFO_RST_W<'a, REG> = crate::BitWriter<'a, REG>;
impl R {
    #[doc = "Bits 0:1 - SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3: SPI clock is alwasy on."]
    #[inline(always)]
    pub fn spi_mem_clk_mode(&self) -> SPI_MEM_CLK_MODE_R {
        SPI_MEM_CLK_MODE_R::new((self.bits & 3) as u8)
    }
    #[doc = "Bit 21 - 1: MSPI supports ARSIZE 0~3. When ARSIZE =0~2, MSPI read address is 4*n and reply the real AXI read data back. 0: When ARSIZE 0~1, MSPI reply SLV_ERR."]
    #[inline(always)]
    pub fn spi_ar_size0_1_support_en(&self) -> SPI_AR_SIZE0_1_SUPPORT_EN_R {
        SPI_AR_SIZE0_1_SUPPORT_EN_R::new(((self.bits >> 21) & 1) != 0)
    }
    #[doc = "Bit 22 - 1: MSPI supports AWSIZE 0~3. 0: When AWSIZE 0~1, MSPI reply SLV_ERR."]
    #[inline(always)]
    pub fn spi_aw_size0_1_support_en(&self) -> SPI_AW_SIZE0_1_SUPPORT_EN_R {
        SPI_AW_SIZE0_1_SUPPORT_EN_R::new(((self.bits >> 22) & 1) != 0)
    }
    #[doc = "Bit 23 - 1: Reply AXI read data to AXI bus when one AXI read beat data is available. 0: Reply AXI read data to AXI bus when all the read data is available."]
    #[inline(always)]
    pub fn spi_axi_rdata_back_fast(&self) -> SPI_AXI_RDATA_BACK_FAST_R {
        SPI_AXI_RDATA_BACK_FAST_R::new(((self.bits >> 23) & 1) != 0)
    }
    #[doc = "Bit 24 - 1: RRESP is SLV_ERR when there is a ECC error in AXI read data. 0: RRESP is OKAY when there is a ECC error in AXI read data. The ECC error information is recorded in SPI_MEM_ECC_ERR_ADDR_REG."]
    #[inline(always)]
    pub fn spi_mem_rresp_ecc_err_en(&self) -> SPI_MEM_RRESP_ECC_ERR_EN_R {
        SPI_MEM_RRESP_ECC_ERR_EN_R::new(((self.bits >> 24) & 1) != 0)
    }
    #[doc = "Bit 25 - Set this bit to enable AXI Read Splice-transfer."]
    #[inline(always)]
    pub fn spi_mem_ar_splice_en(&self) -> SPI_MEM_AR_SPLICE_EN_R {
        SPI_MEM_AR_SPLICE_EN_R::new(((self.bits >> 25) & 1) != 0)
    }
    #[doc = "Bit 26 - Set this bit to enable AXI Write Splice-transfer."]
    #[inline(always)]
    pub fn spi_mem_aw_splice_en(&self) -> SPI_MEM_AW_SPLICE_EN_R {
        SPI_MEM_AW_SPLICE_EN_R::new(((self.bits >> 26) & 1) != 0)
    }
    #[doc = "Bit 27 - When SPI_MEM_DUAL_RAM_EN is 0 and SPI_MEM_RAM0_EN is 1, only EXT_RAM0 will be accessed. When SPI_MEM_DUAL_RAM_EN is 0 and SPI_MEM_RAM0_EN is 0, only EXT_RAM1 will be accessed. When SPI_MEM_DUAL_RAM_EN is 1, EXT_RAM0 and EXT_RAM1 will be accessed at the same time."]
    #[inline(always)]
    pub fn spi_mem_ram0_en(&self) -> SPI_MEM_RAM0_EN_R {
        SPI_MEM_RAM0_EN_R::new(((self.bits >> 27) & 1) != 0)
    }
    #[doc = "Bit 28 - Set this bit to enable DUAL-RAM mode, EXT_RAM0 and EXT_RAM1 will be accessed at the same time."]
    #[inline(always)]
    pub fn spi_mem_dual_ram_en(&self) -> SPI_MEM_DUAL_RAM_EN_R {
        SPI_MEM_DUAL_RAM_EN_R::new(((self.bits >> 28) & 1) != 0)
    }
    #[doc = "Bit 29 - Set this bit to write data faster, do not wait write data has been stored in tx_bus_fifo_l2. It will wait 4*T_clk_ctrl to insure the write data has been stored in tx_bus_fifo_l2."]
    #[inline(always)]
    pub fn spi_mem_fast_write_en(&self) -> SPI_MEM_FAST_WRITE_EN_R {
        SPI_MEM_FAST_WRITE_EN_R::new(((self.bits >> 29) & 1) != 0)
    }
}
#[cfg(feature = "impl-register-debug")]
impl core::fmt::Debug for R {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("SPI_MEM_CTRL1")
            .field(
                "spi_mem_clk_mode",
                &format_args!("{}", self.spi_mem_clk_mode().bits()),
            )
            .field(
                "spi_ar_size0_1_support_en",
                &format_args!("{}", self.spi_ar_size0_1_support_en().bit()),
            )
            .field(
                "spi_aw_size0_1_support_en",
                &format_args!("{}", self.spi_aw_size0_1_support_en().bit()),
            )
            .field(
                "spi_axi_rdata_back_fast",
                &format_args!("{}", self.spi_axi_rdata_back_fast().bit()),
            )
            .field(
                "spi_mem_rresp_ecc_err_en",
                &format_args!("{}", self.spi_mem_rresp_ecc_err_en().bit()),
            )
            .field(
                "spi_mem_ar_splice_en",
                &format_args!("{}", self.spi_mem_ar_splice_en().bit()),
            )
            .field(
                "spi_mem_aw_splice_en",
                &format_args!("{}", self.spi_mem_aw_splice_en().bit()),
            )
            .field(
                "spi_mem_ram0_en",
                &format_args!("{}", self.spi_mem_ram0_en().bit()),
            )
            .field(
                "spi_mem_dual_ram_en",
                &format_args!("{}", self.spi_mem_dual_ram_en().bit()),
            )
            .field(
                "spi_mem_fast_write_en",
                &format_args!("{}", self.spi_mem_fast_write_en().bit()),
            )
            .finish()
    }
}
#[cfg(feature = "impl-register-debug")]
impl core::fmt::Debug for crate::generic::Reg<SPI_MEM_CTRL1_SPEC> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        core::fmt::Debug::fmt(&self.read(), f)
    }
}
impl W {
    #[doc = "Bits 0:1 - SPI clock mode bits. 0: SPI clock is off when CS inactive 1: SPI clock is delayed one cycle after CS inactive 2: SPI clock is delayed two cycles after CS inactive 3: SPI clock is alwasy on."]
    #[inline(always)]
    #[must_use]
    pub fn spi_mem_clk_mode(&mut self) -> SPI_MEM_CLK_MODE_W<SPI_MEM_CTRL1_SPEC> {
        SPI_MEM_CLK_MODE_W::new(self, 0)
    }
    #[doc = "Bit 21 - 1: MSPI supports ARSIZE 0~3. When ARSIZE =0~2, MSPI read address is 4*n and reply the real AXI read data back. 0: When ARSIZE 0~1, MSPI reply SLV_ERR."]
    #[inline(always)]
    #[must_use]
    pub fn spi_ar_size0_1_support_en(&mut self) -> SPI_AR_SIZE0_1_SUPPORT_EN_W<SPI_MEM_CTRL1_SPEC> {
        SPI_AR_SIZE0_1_SUPPORT_EN_W::new(self, 21)
    }
    #[doc = "Bit 22 - 1: MSPI supports AWSIZE 0~3. 0: When AWSIZE 0~1, MSPI reply SLV_ERR."]
    #[inline(always)]
    #[must_use]
    pub fn spi_aw_size0_1_support_en(&mut self) -> SPI_AW_SIZE0_1_SUPPORT_EN_W<SPI_MEM_CTRL1_SPEC> {
        SPI_AW_SIZE0_1_SUPPORT_EN_W::new(self, 22)
    }
    #[doc = "Bit 24 - 1: RRESP is SLV_ERR when there is a ECC error in AXI read data. 0: RRESP is OKAY when there is a ECC error in AXI read data. The ECC error information is recorded in SPI_MEM_ECC_ERR_ADDR_REG."]
    #[inline(always)]
    #[must_use]
    pub fn spi_mem_rresp_ecc_err_en(&mut self) -> SPI_MEM_RRESP_ECC_ERR_EN_W<SPI_MEM_CTRL1_SPEC> {
        SPI_MEM_RRESP_ECC_ERR_EN_W::new(self, 24)
    }
    #[doc = "Bit 29 - Set this bit to write data faster, do not wait write data has been stored in tx_bus_fifo_l2. It will wait 4*T_clk_ctrl to insure the write data has been stored in tx_bus_fifo_l2."]
    #[inline(always)]
    #[must_use]
    pub fn spi_mem_fast_write_en(&mut self) -> SPI_MEM_FAST_WRITE_EN_W<SPI_MEM_CTRL1_SPEC> {
        SPI_MEM_FAST_WRITE_EN_W::new(self, 29)
    }
    #[doc = "Bit 30 - The synchronous reset signal for SPI0 RX AFIFO and all the AES_MSPI SYNC FIFO to receive signals from AXI. Set this bit to reset these FIFO."]
    #[inline(always)]
    #[must_use]
    pub fn spi_mem_rxfifo_rst(&mut self) -> SPI_MEM_RXFIFO_RST_W<SPI_MEM_CTRL1_SPEC> {
        SPI_MEM_RXFIFO_RST_W::new(self, 30)
    }
    #[doc = "Bit 31 - The synchronous reset signal for SPI0 TX AFIFO and all the AES_MSPI SYNC FIFO to send signals to AXI. Set this bit to reset these FIFO."]
    #[inline(always)]
    #[must_use]
    pub fn spi_mem_txfifo_rst(&mut self) -> SPI_MEM_TXFIFO_RST_W<SPI_MEM_CTRL1_SPEC> {
        SPI_MEM_TXFIFO_RST_W::new(self, 31)
    }
    #[doc = r" Writes raw bits to the register."]
    #[doc = r""]
    #[doc = r" # Safety"]
    #[doc = r""]
    #[doc = r" Passing incorrect value can cause undefined behaviour. See reference manual"]
    #[inline(always)]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
}
#[doc = "SPI0 control1 register.\n\nYou can [`read`](crate::generic::Reg::read) this register and get [`spi_mem_ctrl1::R`](R).  You can [`reset`](crate::generic::Reg::reset), [`write`](crate::generic::Reg::write), [`write_with_zero`](crate::generic::Reg::write_with_zero) this register using [`spi_mem_ctrl1::W`](W). You can also [`modify`](crate::generic::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api)."]
pub struct SPI_MEM_CTRL1_SPEC;
impl crate::RegisterSpec for SPI_MEM_CTRL1_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [`spi_mem_ctrl1::R`](R) reader structure"]
impl crate::Readable for SPI_MEM_CTRL1_SPEC {}
#[doc = "`write(|w| ..)` method takes [`spi_mem_ctrl1::W`](W) writer structure"]
impl crate::Writable for SPI_MEM_CTRL1_SPEC {
    const ZERO_TO_MODIFY_FIELDS_BITMAP: Self::Ux = 0;
    const ONE_TO_MODIFY_FIELDS_BITMAP: Self::Ux = 0;
}
#[doc = "`reset()` method sets SPI_MEM_CTRL1 to value 0x28e0_0000"]
impl crate::Resettable for SPI_MEM_CTRL1_SPEC {
    const RESET_VALUE: Self::Ux = 0x28e0_0000;
}