1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! Analog to digital (ADC) conversion support.
//!
//! This module provides functions for reading analog values from two
//! analog to digital converters available on the ESP32: `ADC1` and `ADC2`.
//!
//! The following pins can be configured for analog readout:
//!
//! | Channel | ADC1                 | ADC2          |
//! |---------|----------------------|---------------|
//! | 0       | GPIO36 (SENSOR_VP)   | GPIO4         |
//! | 1       | GPIO37 (SENSOR_CAPP) | GPIO0         |
//! | 2       | GPIO38 (SENSOR_CAPN) | GPIO2         |
//! | 3       | GPIO39 (SENSOR_VN)   | GPIO15 (MTDO) |
//! | 4       | GPIO33 (32K_XP)      | GPIO13 (MTCK) |
//! | 5       | GPIO32 (32K_XN)      | GPIO12 (MTDI) |
//! | 6       | GPIO34 (VDET_1)      | GPIO14 (MTMS) |
//! | 7       | GPIO35 (VDET_2)      | GPIO27        |
//! | 8       |                      | GPIO25        |
//! | 9       |                      | GPIO26        |
//!

use core::marker::PhantomData;
use embedded_hal::adc::{Channel, OneShot};

use crate::analog::config;
use crate::analog::{ADC1, ADC2};
use crate::gpio::*;
use crate::target::{RTCIO, SENS};

pub struct ADC<ADC> {
    adc: PhantomData<ADC>,
    attenuations: [Option<config::Attenuation>; 10],
    active_channel: Option<u8>,
}

macro_rules! impl_adc_setup {
    ($config:expr, $bit_width:ident, $read_reg:ident, $sample_bit:ident, $atten_reg: ident,
        $atten_field:ident, $dig_force:ident, $meas_start_reg:ident,
        $start_force_field:ident, $en_pad_force:ident) => {
        let sensors = unsafe { &*SENS::ptr() };

        /* Set reading and sampling resolution */
        let resolution: u8 = $config.resolution as u8;

        sensors
            .sar_start_force
            .modify(|_, w| unsafe { w.$bit_width().bits(resolution) });
        sensors
            .$read_reg
            .modify(|_, w| unsafe { w.$sample_bit().bits(resolution) });

        /* Set attenuation for pins */
        let attenuations = $config.attenuations;

        for channel in 0..attenuations.len() {
            if let Some(attenuation) = attenuations[channel] {
                sensors.$atten_reg.modify(|r, w| {
                    let new_value = (r.bits() & !(0b11 << (channel * 2)))
                        | (((attenuation as u8 & 0b11) as u32) << (channel * 2));

                    unsafe { w.$atten_field().bits(new_value) }
                });
            }
        }

        /* Set controller to RTC */
        sensors.$read_reg.modify(|_, w| w.$dig_force().clear_bit());
        sensors
            .$meas_start_reg
            .modify(|_, w| w.$start_force_field().set_bit());
        sensors
            .$meas_start_reg
            .modify(|_, w| w.$en_pad_force().set_bit());
        sensors
            .sar_touch_ctrl1
            .modify(|_, w| w.xpd_hall_force().set_bit());
        sensors
            .sar_touch_ctrl1
            .modify(|_, w| w.hall_phase_force().set_bit());

        /* Set power to SW power on */
        sensors
            .sar_meas_wait2
            .modify(|_, w| unsafe { w.force_xpd_sar().bits(0b11) });

        /* disable AMP */
        sensors
            .sar_meas_wait2
            .modify(|_, w| unsafe { w.force_xpd_amp().bits(0b10) });
        sensors
            .sar_meas_ctrl
            .modify(|_, w| unsafe { w.amp_rst_fb_fsm().bits(0) });
        sensors
            .sar_meas_ctrl
            .modify(|_, w| unsafe { w.amp_short_ref_fsm().bits(0) });
        sensors
            .sar_meas_ctrl
            .modify(|_, w| unsafe { w.amp_short_ref_gnd_fsm().bits(0) });
        sensors
            .sar_meas_wait1
            .modify(|_, w| unsafe { w.sar_amp_wait1().bits(1) });
        sensors
            .sar_meas_wait1
            .modify(|_, w| unsafe { w.sar_amp_wait2().bits(1) });
        sensors
            .sar_meas_wait2
            .modify(|_, w| unsafe { w.sar_amp_wait3().bits(1) });
    };
}

impl ADC<ADC1> {
    pub fn adc1(_adc_instance: ADC1, config: config::Adc1Config) -> Result<Self, ()> {
        impl_adc_setup!(
            config,
            sar1_bit_width,
            sar_read_ctrl,
            sar1_sample_bit,
            sar_atten1,
            sar1_atten,
            sar1_dig_force,
            sar_meas_start1,
            meas1_start_force,
            sar1_en_pad_force
        );

        /* Connect or disconnect hall sensor */
        let rtcio = unsafe { &*RTCIO::ptr() };

        if config.hall_sensor {
            rtcio.hall_sens.modify(|_, w| w.xpd_hall().set_bit());
        } else {
            rtcio.hall_sens.modify(|_, w| w.xpd_hall().clear_bit());
        }

        let adc = ADC {
            adc: PhantomData,
            attenuations: config.attenuations,
            active_channel: None,
        };

        Ok(adc)
    }
}

impl ADC<ADC2> {
    pub fn adc2(_adc_instance: ADC2, config: config::Adc2Config) -> Result<Self, ()> {
        impl_adc_setup!(
            config,
            sar2_bit_width,
            sar_read_ctrl2,
            sar2_sample_bit,
            sar_atten2,
            sar2_atten,
            sar2_dig_force,
            sar_meas_start2,
            meas2_start_force,
            sar2_en_pad_force
        );

        let adc = ADC {
            adc: PhantomData,
            attenuations: config.attenuations,
            active_channel: None,
        };

        Ok(adc)
    }
}

macro_rules! impl_adc_interface {
    ($adc:ident ($start_reg:ident, $en_pad:ident, $start:ident, $done:ident, $data:ident): [
        $( ($pin:ident, $channel:expr) ,)+
    ]) => {

        impl<WORD, PIN> OneShot<$adc, WORD, PIN> for ADC<$adc>
        where
        WORD: From<u16>,
        PIN: Channel<$adc, ID=u8>,
        {
            type Error = ();

            fn read(&mut self, _pin: &mut PIN) -> nb::Result<WORD, Self::Error> {
                let sensors = unsafe { &*SENS::ptr() };

                if self.attenuations[PIN::channel() as usize] == None {
                    panic!("Channel {} is not configured reading!", PIN::channel());
                }

                if let Some(active_channel) = self.active_channel {
                    // There is conversion in progress:
                    // - if it's for a different channel try again later
                    // - if it's for the given channel, go ahaid and check progress
                    if active_channel != PIN::channel() {
                        return Err(nb::Error::WouldBlock);
                    }
                }
                else {
                    // If no conversions are in progress, start a new one for given channel
                    self.active_channel = Some(PIN::channel());

                    sensors.$start_reg.modify(|_, w| {
                        unsafe { w.$en_pad().bits(1 << PIN::channel() as u8) }
                    });

                    sensors.$start_reg.modify(|_,w| w.$start().clear_bit());
                    sensors.$start_reg.modify(|_,w| w.$start().set_bit());
                }

                // Wait for ADC to finish conversion
                let conversion_finished = sensors.$start_reg.read().$done().bit_is_set();
                if !conversion_finished {
                    return Err(nb::Error::WouldBlock);
                }

                // Get converted value
                let converted_value = sensors.$start_reg.read().$data().bits() as u16;

                // Mark that no conversions are currently in progress
                self.active_channel = None;

                Ok(converted_value.into())
            }
        }


        $(
            impl Channel<$adc> for $pin<Analog> {
                type ID = u8;

                fn channel() -> u8 { $channel }
            }
        )+
    }
}

impl_adc_interface! {
    ADC1 (sar_meas_start1, sar1_en_pad, meas1_start_sar, meas1_done_sar, meas1_data_sar): [
        (Gpio36, 0), // Alt. name: SENSOR_VP
        (Gpio37, 1), // Alt. name: SENSOR_CAPP
        (Gpio38, 2), // Alt. name: SENSOR_CAPN
        (Gpio39, 3), // Alt. name: SENSOR_VN
        (Gpio33, 4), // Alt. name: 32K_XP
        (Gpio32, 5), // Alt. name: 32K_XN
        (Gpio34, 6), // Alt. name: VDET_1
        (Gpio35, 7), // Alt. name: VDET_2
    ]
}

impl_adc_interface! {
    ADC2 (sar_meas_start2, sar2_en_pad, meas2_start_sar, meas2_done_sar, meas2_data_sar): [
        (Gpio4, 0),
        (Gpio0, 1),
        (Gpio2, 2),
        (Gpio15, 3), // Alt. name: MTDO
        (Gpio13, 4), // Alt. name: MTCK
        (Gpio12, 5), // Alt. name: MTDI
        (Gpio14, 6), // Alt. name: MTMS
        (Gpio27, 7),
        (Gpio25, 8),
        (Gpio26, 9),
    ]
}