esp_alloc/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
//! A `no_std` heap allocator for RISC-V and Xtensa processors from
//! Espressif. Supports all currently available ESP32 devices.
//!
//! **NOTE:** using this as your global allocator requires using Rust 1.68 or
//! greater, or the `nightly` release channel.
//!
//! # Using this as your Global Allocator
//!
//! ```rust
//! use esp_alloc as _;
//!
//! fn init_heap() {
//! const HEAP_SIZE: usize = 32 * 1024;
//! static mut HEAP: MaybeUninit<[u8; HEAP_SIZE]> = MaybeUninit::uninit();
//!
//! unsafe {
//! esp_alloc::HEAP.add_region(esp_alloc::HeapRegion::new(
//! HEAP.as_mut_ptr() as *mut u8,
//! HEAP_SIZE,
//! esp_alloc::MemoryCapability::Internal.into(),
//! ));
//! }
//! }
//! ```
//!
//! # Using this with the nightly `allocator_api`-feature
//! Sometimes you want to have more control over allocations.
//!
//! For that, it's convenient to use the nightly `allocator_api`-feature,
//! which allows you to specify an allocator for single allocations.
//!
//! **NOTE:** To use this, you have to enable the crate's `nightly` feature
//! flag.
//!
//! Create and initialize an allocator to use in single allocations:
//! ```rust
//! static PSRAM_ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();
//!
//! fn init_psram_heap() {
//! unsafe {
//! PSRAM_ALLOCATOR.add_region(esp_alloc::HeapRegion::new(
//! psram::psram_vaddr_start() as *mut u8,
//! psram::PSRAM_BYTES,
//! esp_alloc::MemoryCapability::Internal.into(),
//! ));
//! }
//! }
//! ```
//!
//! And then use it in an allocation:
//! ```rust
//! let large_buffer: Vec<u8, _> = Vec::with_capacity_in(1048576, &PSRAM_ALLOCATOR);
//! ```
//!
//! You can also get stats about the heap usage at anytime with:
//! ```rust
//! let stats: HeapStats = esp_alloc::HEAP.stats();
//! // HeapStats implements the Display and defmt::Format traits, so you can pretty-print the heap stats.
//! println!("{}", stats);
//! ```
//!
//! ```txt
//! HEAP INFO
//! Size: 131068
//! Current usage: 46148
//! Max usage: 46148
//! Total freed: 0
//! Total allocated: 46148
//! Memory Layout:
//! Internal | ████████████░░░░░░░░░░░░░░░░░░░░░░░ | Used: 35% (Used 46148 of 131068, free: 84920)
//! Unused | ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ |
//! Unused | ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ |
//! ```
//! ## Feature Flags
#![doc = document_features::document_features!()]
#![no_std]
#![cfg_attr(feature = "nightly", feature(allocator_api))]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]
mod macros;
#[cfg(feature = "nightly")]
use core::alloc::{AllocError, Allocator};
use core::{
alloc::{GlobalAlloc, Layout},
cell::RefCell,
fmt::Display,
ptr::{self, NonNull},
};
use critical_section::Mutex;
use enumset::{EnumSet, EnumSetType};
use linked_list_allocator::Heap;
/// The global allocator instance
#[global_allocator]
pub static HEAP: EspHeap = EspHeap::empty();
const NON_REGION: Option<HeapRegion> = None;
const BAR_WIDTH: usize = 35;
fn write_bar(f: &mut core::fmt::Formatter<'_>, usage_percent: usize) -> core::fmt::Result {
let used_blocks = BAR_WIDTH * usage_percent / 100;
(0..used_blocks).try_for_each(|_| write!(f, "█"))?;
(used_blocks..BAR_WIDTH).try_for_each(|_| write!(f, "░"))
}
#[cfg(feature = "defmt")]
fn write_bar_defmt(fmt: defmt::Formatter, usage_percent: usize) {
let used_blocks = BAR_WIDTH * usage_percent / 100;
(0..used_blocks).for_each(|_| defmt::write!(fmt, "█"));
(used_blocks..BAR_WIDTH).for_each(|_| defmt::write!(fmt, "░"));
}
#[derive(EnumSetType, Debug)]
/// Describes the properties of a memory region
pub enum MemoryCapability {
/// Memory must be internal; specifically it should not disappear when
/// flash/spiram cache is switched off
Internal,
/// Memory must be in SPI RAM
External,
}
/// Stats for a heap region
#[derive(Debug)]
pub struct RegionStats {
/// Total usable size of the heap region in bytes.
size: usize,
/// Currently used size of the heap region in bytes.
used: usize,
/// Free size of the heap region in bytes.
free: usize,
/// Capabilities of the memory region.
capabilities: EnumSet<MemoryCapability>,
}
impl Display for RegionStats {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let usage_percent = self.used * 100 / self.size;
// Display Memory type
if self.capabilities.contains(MemoryCapability::Internal) {
write!(f, "Internal")?;
} else if self.capabilities.contains(MemoryCapability::External) {
write!(f, "External")?;
} else {
write!(f, "Unknown")?;
}
write!(f, " | ")?;
write_bar(f, usage_percent)?;
write!(
f,
" | Used: {}% (Used {} of {}, free: {})",
usage_percent, self.used, self.size, self.free
)
}
}
#[cfg(feature = "defmt")]
impl defmt::Format for RegionStats {
fn format(&self, fmt: defmt::Formatter) {
let usage_percent = self.used * 100 / self.size;
if self.capabilities.contains(MemoryCapability::Internal) {
defmt::write!(fmt, "Internal");
} else if self.capabilities.contains(MemoryCapability::External) {
defmt::write!(fmt, "External");
} else {
defmt::write!(fmt, "Unknown");
}
defmt::write!(fmt, " | ");
write_bar_defmt(fmt, usage_percent);
defmt::write!(
fmt,
" | Used: {}% (Used {} of {}, free: {})",
usage_percent,
self.used,
self.size,
self.free
);
}
}
/// A memory region to be used as heap memory
pub struct HeapRegion {
heap: Heap,
capabilities: EnumSet<MemoryCapability>,
}
impl HeapRegion {
/// Create a new [HeapRegion] with the given capabilities
///
/// # Safety
///
/// - The supplied memory region must be available for the entire program
/// (`'static`).
/// - The supplied memory region must be exclusively available to the heap
/// only, no aliasing.
/// - `size > 0`.
pub unsafe fn new(
heap_bottom: *mut u8,
size: usize,
capabilities: EnumSet<MemoryCapability>,
) -> Self {
let mut heap = Heap::empty();
heap.init(heap_bottom, size);
Self { heap, capabilities }
}
/// Return stats for the current memory region
pub fn stats(&self) -> RegionStats {
RegionStats {
size: self.heap.size(),
used: self.heap.used(),
free: self.heap.free(),
capabilities: self.capabilities,
}
}
}
/// Stats for a heap allocator
///
/// Enable the "internal-heap-stats" feature if you want collect additional heap
/// informations at the cost of extra cpu time during every alloc/dealloc.
#[derive(Debug)]
pub struct HeapStats {
/// Granular stats for all the configured memory regions.
region_stats: [Option<RegionStats>; 3],
/// Total size of all combined heap regions in bytes.
size: usize,
/// Current usage of the heap across all configured regions in bytes.
current_usage: usize,
/// Estimation of the max used heap in bytes.
#[cfg(feature = "internal-heap-stats")]
max_usage: usize,
/// Estimation of the total allocated bytes since initialization.
#[cfg(feature = "internal-heap-stats")]
total_allocated: usize,
/// Estimation of the total freed bytes since initialization.
#[cfg(feature = "internal-heap-stats")]
total_freed: usize,
}
impl Display for HeapStats {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
writeln!(f, "HEAP INFO")?;
writeln!(f, "Size: {}", self.size)?;
writeln!(f, "Current usage: {}", self.current_usage)?;
#[cfg(feature = "internal-heap-stats")]
{
writeln!(f, "Max usage: {}", self.max_usage)?;
writeln!(f, "Total freed: {}", self.total_freed)?;
writeln!(f, "Total allocated: {}", self.total_allocated)?;
}
writeln!(f, "Memory Layout: ")?;
for region in self.region_stats.iter() {
if let Some(region) = region.as_ref() {
region.fmt(f)?;
writeln!(f)?;
} else {
// Display unused memory regions
write!(f, "Unused | ")?;
write_bar(f, 0)?;
writeln!(f, " |")?;
}
}
Ok(())
}
}
#[cfg(feature = "defmt")]
impl defmt::Format for HeapStats {
fn format(&self, fmt: defmt::Formatter) {
defmt::write!(fmt, "HEAP INFO\n");
defmt::write!(fmt, "Size: {}\n", self.size);
defmt::write!(fmt, "Current usage: {}\n", self.current_usage);
#[cfg(feature = "internal-heap-stats")]
{
defmt::write!(fmt, "Max usage: {}\n", self.max_usage);
defmt::write!(fmt, "Total freed: {}\n", self.total_freed);
defmt::write!(fmt, "Total allocated: {}\n", self.total_allocated);
}
defmt::write!(fmt, "Memory Layout:\n");
for region in self.region_stats.iter() {
if let Some(region) = region.as_ref() {
defmt::write!(fmt, "{}\n", region);
} else {
defmt::write!(fmt, "Unused | ");
write_bar_defmt(fmt, 0);
defmt::write!(fmt, " |\n");
}
}
}
}
/// Internal stats to keep track across multiple regions.
#[cfg(feature = "internal-heap-stats")]
struct InternalHeapStats {
max_usage: usize,
total_allocated: usize,
total_freed: usize,
}
/// A memory allocator
///
/// In addition to what Rust's memory allocator can do it allows to allocate
/// memory in regions satisfying specific needs.
pub struct EspHeap {
heap: Mutex<RefCell<[Option<HeapRegion>; 3]>>,
#[cfg(feature = "internal-heap-stats")]
internal_heap_stats: Mutex<RefCell<InternalHeapStats>>,
}
impl EspHeap {
/// Crate a new UNINITIALIZED heap allocator
pub const fn empty() -> Self {
EspHeap {
heap: Mutex::new(RefCell::new([NON_REGION; 3])),
#[cfg(feature = "internal-heap-stats")]
internal_heap_stats: Mutex::new(RefCell::new(InternalHeapStats {
max_usage: 0,
total_allocated: 0,
total_freed: 0,
})),
}
}
/// Add a memory region to the heap
///
/// `heap_bottom` is a pointer to the location of the bottom of the heap.
///
/// `size` is the size of the heap in bytes.
///
/// You can add up to three regions per allocator.
///
/// Note that:
///
/// - Memory is allocated from the first suitable memory region first
///
/// - The heap grows "upwards", towards larger addresses. Thus `end_addr`
/// must be larger than `start_addr`
///
/// - The size of the heap is `(end_addr as usize) - (start_addr as usize)`.
/// The allocator won't use the byte at `end_addr`.
///
/// # Safety
///
/// - The supplied memory region must be available for the entire program (a
/// `'static` lifetime).
/// - The supplied memory region must be exclusively available to the heap
/// only, no aliasing.
/// - `size > 0`.
pub unsafe fn add_region(&self, region: HeapRegion) {
critical_section::with(|cs| {
let mut regions = self.heap.borrow_ref_mut(cs);
let free = regions
.iter()
.enumerate()
.find(|v| v.1.is_none())
.map(|v| v.0);
if let Some(free) = free {
regions[free] = Some(region);
} else {
panic!(
"Exceeded the maximum of {} heap memory regions",
regions.len()
);
}
});
}
/// Returns an estimate of the amount of bytes in use in all memory regions.
pub fn used(&self) -> usize {
critical_section::with(|cs| {
let regions = self.heap.borrow_ref(cs);
let mut used = 0;
for region in regions.iter() {
if let Some(region) = region.as_ref() {
used += region.heap.used();
}
}
used
})
}
/// Return usage stats for the [Heap].
///
/// Note:
/// [HeapStats] directly implements [Display], so this function can be
/// called from within `println!()` to pretty-print the usage of the
/// heap.
pub fn stats(&self) -> HeapStats {
const EMPTY_REGION_STAT: Option<RegionStats> = None;
let mut region_stats: [Option<RegionStats>; 3] = [EMPTY_REGION_STAT; 3];
critical_section::with(|cs| {
let mut used = 0;
let mut free = 0;
let regions = self.heap.borrow_ref(cs);
for (id, region) in regions.iter().enumerate() {
if let Some(region) = region.as_ref() {
let stats = region.stats();
free += stats.free;
used += stats.used;
region_stats[id] = Some(region.stats());
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "internal-heap-stats")] {
let internal_heap_stats = self.internal_heap_stats.borrow_ref(cs);
HeapStats {
region_stats,
size: free + used,
current_usage: used,
max_usage: internal_heap_stats.max_usage,
total_allocated: internal_heap_stats.total_allocated,
total_freed: internal_heap_stats.total_freed,
}
} else {
HeapStats {
region_stats,
size: free + used,
current_usage: used,
}
}
}
})
}
/// Returns an estimate of the amount of bytes available.
pub fn free(&self) -> usize {
self.free_caps(EnumSet::empty())
}
/// The free heap satisfying the given requirements
pub fn free_caps(&self, capabilities: EnumSet<MemoryCapability>) -> usize {
critical_section::with(|cs| {
let regions = self.heap.borrow_ref(cs);
let mut free = 0;
for region in regions.iter().filter(|region| {
if region.is_some() {
region
.as_ref()
.unwrap()
.capabilities
.is_superset(capabilities)
} else {
false
}
}) {
if let Some(region) = region.as_ref() {
free += region.heap.free();
}
}
free
})
}
/// Allocate memory in a region satisfying the given requirements.
///
/// # Safety
///
/// This function is unsafe because undefined behavior can result
/// if the caller does not ensure that `layout` has non-zero size.
///
/// The allocated block of memory may or may not be initialized.
pub unsafe fn alloc_caps(
&self,
capabilities: EnumSet<MemoryCapability>,
layout: Layout,
) -> *mut u8 {
critical_section::with(|cs| {
#[cfg(feature = "internal-heap-stats")]
let before = self.used();
let mut regions = self.heap.borrow_ref_mut(cs);
let mut iter = (*regions).iter_mut().filter(|region| {
if region.is_some() {
region
.as_ref()
.unwrap()
.capabilities
.is_superset(capabilities)
} else {
false
}
});
let res = loop {
if let Some(Some(region)) = iter.next() {
let res = region.heap.allocate_first_fit(layout);
if let Ok(res) = res {
break Some(res);
}
} else {
break None;
}
};
res.map_or(ptr::null_mut(), |allocation| {
#[cfg(feature = "internal-heap-stats")]
{
let mut internal_heap_stats = self.internal_heap_stats.borrow_ref_mut(cs);
drop(regions);
// We need to call used because [linked_list_allocator::Heap] does internal size
// alignment so we cannot use the size provided by the layout.
let used = self.used();
internal_heap_stats.total_allocated += used - before;
internal_heap_stats.max_usage =
core::cmp::max(internal_heap_stats.max_usage, used);
}
allocation.as_ptr()
})
})
}
}
unsafe impl GlobalAlloc for EspHeap {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.alloc_caps(EnumSet::empty(), layout)
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
if ptr.is_null() {
return;
}
critical_section::with(|cs| {
#[cfg(feature = "internal-heap-stats")]
let before = self.used();
let mut regions = self.heap.borrow_ref_mut(cs);
let mut iter = (*regions).iter_mut();
while let Some(Some(region)) = iter.next() {
if region.heap.bottom() <= ptr && region.heap.top() >= ptr {
region.heap.deallocate(NonNull::new_unchecked(ptr), layout);
}
}
#[cfg(feature = "internal-heap-stats")]
{
let mut internal_heap_stats = self.internal_heap_stats.borrow_ref_mut(cs);
drop(regions);
// We need to call `used()` because [linked_list_allocator::Heap] does internal
// size alignment so we cannot use the size provided by the
// layout.
internal_heap_stats.total_freed += before - self.used();
}
})
}
}
#[cfg(feature = "nightly")]
unsafe impl Allocator for EspHeap {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
let raw_ptr = unsafe { self.alloc(layout) };
if raw_ptr.is_null() {
return Err(AllocError);
}
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
self.dealloc(ptr.as_ptr(), layout);
}
}