esp_alloc/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//! A `no_std` heap allocator for RISC-V and Xtensa processors from
//! Espressif. Supports all currently available ESP32 devices.
//!
//! **NOTE:** using this as your global allocator requires using Rust 1.68 or
//! greater, or the `nightly` release channel.
//!
//! # Using this as your Global Allocator
//!
//! ```rust
//! use esp_alloc as _;
//!
//! fn init_heap() {
//!     const HEAP_SIZE: usize = 32 * 1024;
//!     static mut HEAP: MaybeUninit<[u8; HEAP_SIZE]> = MaybeUninit::uninit();
//!
//!     unsafe {
//!         esp_alloc::HEAP.add_region(esp_alloc::HeapRegion::new(
//!             HEAP.as_mut_ptr() as *mut u8,
//!             HEAP_SIZE,
//!             esp_alloc::MemoryCapability::Internal.into(),
//!         ));
//!     }
//! }
//! ```
//!
//! # Using this with the nightly `allocator_api`-feature
//! Sometimes you want to have more control over allocations.
//!
//! For that, it's convenient to use the nightly `allocator_api`-feature,
//! which allows you to specify an allocator for single allocations.
//!
//! **NOTE:** To use this, you have to enable the crate's `nightly` feature
//! flag.
//!
//! Create and initialize an allocator to use in single allocations:
//! ```rust
//! static PSRAM_ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();
//!
//! fn init_psram_heap() {
//!     unsafe {
//!         PSRAM_ALLOCATOR.add_region(esp_alloc::HeapRegion::new(
//!             psram::psram_vaddr_start() as *mut u8,
//!             psram::PSRAM_BYTES,
//!             esp_alloc::MemoryCapability::Internal.into(),
//!         ));
//!     }
//! }
//! ```
//!
//! And then use it in an allocation:
//! ```rust
//! let large_buffer: Vec<u8, _> = Vec::with_capacity_in(1048576, &PSRAM_ALLOCATOR);
//! ```
//!
//! You can also get stats about the heap usage at anytime with:
//! ```rust
//! let stats: HeapStats = esp_alloc::HEAP.stats();
//! // HeapStats implements the Display and defmt::Format traits, so you can pretty-print the heap stats.
//! println!("{}", stats);
//! ```
//!
//! ```txt
//! HEAP INFO
//! Size: 131068
//! Current usage: 46148
//! Max usage: 46148
//! Total freed: 0
//! Total allocated: 46148
//! Memory Layout:
//! Internal | ████████████░░░░░░░░░░░░░░░░░░░░░░░ | Used: 35% (Used 46148 of 131068, free: 84920)
//! Unused   | ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ |
//! Unused   | ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ |
//! ```
//! ## Feature Flags
#![doc = document_features::document_features!()]
#![no_std]
#![cfg_attr(feature = "nightly", feature(allocator_api))]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]

mod macros;

#[cfg(feature = "nightly")]
use core::alloc::{AllocError, Allocator};
use core::{
    alloc::{GlobalAlloc, Layout},
    cell::RefCell,
    fmt::Display,
    ptr::{self, NonNull},
};

use critical_section::Mutex;
use enumset::{EnumSet, EnumSetType};
use linked_list_allocator::Heap;

/// The global allocator instance
#[global_allocator]
pub static HEAP: EspHeap = EspHeap::empty();

const NON_REGION: Option<HeapRegion> = None;

const BAR_WIDTH: usize = 35;

fn write_bar(f: &mut core::fmt::Formatter<'_>, usage_percent: usize) -> core::fmt::Result {
    let used_blocks = BAR_WIDTH * usage_percent / 100;
    (0..used_blocks).try_for_each(|_| write!(f, "█"))?;
    (used_blocks..BAR_WIDTH).try_for_each(|_| write!(f, "░"))
}

#[cfg(feature = "defmt")]
fn write_bar_defmt(fmt: defmt::Formatter, usage_percent: usize) {
    let used_blocks = BAR_WIDTH * usage_percent / 100;
    (0..used_blocks).for_each(|_| defmt::write!(fmt, "█"));
    (used_blocks..BAR_WIDTH).for_each(|_| defmt::write!(fmt, "░"));
}

#[derive(EnumSetType, Debug)]
/// Describes the properties of a memory region
pub enum MemoryCapability {
    /// Memory must be internal; specifically it should not disappear when
    /// flash/spiram cache is switched off
    Internal,
    /// Memory must be in SPI RAM
    External,
}

/// Stats for a heap region
#[derive(Debug)]
pub struct RegionStats {
    /// Total usable size of the heap region in bytes.
    size: usize,

    /// Currently used size of the heap region in bytes.
    used: usize,

    /// Free size of the heap region in bytes.
    free: usize,

    /// Capabilities of the memory region.
    capabilities: EnumSet<MemoryCapability>,
}

impl Display for RegionStats {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let usage_percent = self.used * 100 / self.size;

        // Display Memory type
        if self.capabilities.contains(MemoryCapability::Internal) {
            write!(f, "Internal")?;
        } else if self.capabilities.contains(MemoryCapability::External) {
            write!(f, "External")?;
        } else {
            write!(f, "Unknown")?;
        }

        write!(f, " | ")?;

        write_bar(f, usage_percent)?;

        write!(
            f,
            " | Used: {}% (Used {} of {}, free: {})",
            usage_percent, self.used, self.size, self.free
        )
    }
}

#[cfg(feature = "defmt")]
impl defmt::Format for RegionStats {
    fn format(&self, fmt: defmt::Formatter) {
        let usage_percent = self.used * 100 / self.size;

        if self.capabilities.contains(MemoryCapability::Internal) {
            defmt::write!(fmt, "Internal");
        } else if self.capabilities.contains(MemoryCapability::External) {
            defmt::write!(fmt, "External");
        } else {
            defmt::write!(fmt, "Unknown");
        }

        defmt::write!(fmt, " | ");

        write_bar_defmt(fmt, usage_percent);

        defmt::write!(
            fmt,
            " | Used: {}% (Used {} of {}, free: {})",
            usage_percent,
            self.used,
            self.size,
            self.free
        );
    }
}

/// A memory region to be used as heap memory
pub struct HeapRegion {
    heap: Heap,
    capabilities: EnumSet<MemoryCapability>,
}

impl HeapRegion {
    /// Create a new [HeapRegion] with the given capabilities
    ///
    /// # Safety
    ///
    /// - The supplied memory region must be available for the entire program
    ///   (`'static`).
    /// - The supplied memory region must be exclusively available to the heap
    ///   only, no aliasing.
    /// - `size > 0`.
    pub unsafe fn new(
        heap_bottom: *mut u8,
        size: usize,
        capabilities: EnumSet<MemoryCapability>,
    ) -> Self {
        let mut heap = Heap::empty();
        heap.init(heap_bottom, size);

        Self { heap, capabilities }
    }

    /// Return stats for the current memory region
    pub fn stats(&self) -> RegionStats {
        RegionStats {
            size: self.heap.size(),
            used: self.heap.used(),
            free: self.heap.free(),
            capabilities: self.capabilities,
        }
    }
}

/// Stats for a heap allocator
///
/// Enable the "internal-heap-stats" feature if you want collect additional heap
/// informations at the cost of extra cpu time during every alloc/dealloc.
#[derive(Debug)]
pub struct HeapStats {
    /// Granular stats for all the configured memory regions.
    region_stats: [Option<RegionStats>; 3],

    /// Total size of all combined heap regions in bytes.
    size: usize,

    /// Current usage of the heap across all configured regions in bytes.
    current_usage: usize,

    /// Estimation of the max used heap in bytes.
    #[cfg(feature = "internal-heap-stats")]
    max_usage: usize,

    /// Estimation of the total allocated bytes since initialization.
    #[cfg(feature = "internal-heap-stats")]
    total_allocated: usize,

    /// Estimation of the total freed bytes since initialization.
    #[cfg(feature = "internal-heap-stats")]
    total_freed: usize,
}

impl Display for HeapStats {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        writeln!(f, "HEAP INFO")?;
        writeln!(f, "Size: {}", self.size)?;
        writeln!(f, "Current usage: {}", self.current_usage)?;
        #[cfg(feature = "internal-heap-stats")]
        {
            writeln!(f, "Max usage: {}", self.max_usage)?;
            writeln!(f, "Total freed: {}", self.total_freed)?;
            writeln!(f, "Total allocated: {}", self.total_allocated)?;
        }
        writeln!(f, "Memory Layout: ")?;
        for region in self.region_stats.iter() {
            if let Some(region) = region.as_ref() {
                region.fmt(f)?;
                writeln!(f)?;
            } else {
                // Display unused memory regions
                write!(f, "Unused   | ")?;
                write_bar(f, 0)?;
                writeln!(f, " |")?;
            }
        }
        Ok(())
    }
}

#[cfg(feature = "defmt")]
impl defmt::Format for HeapStats {
    fn format(&self, fmt: defmt::Formatter) {
        defmt::write!(fmt, "HEAP INFO\n");
        defmt::write!(fmt, "Size: {}\n", self.size);
        defmt::write!(fmt, "Current usage: {}\n", self.current_usage);
        #[cfg(feature = "internal-heap-stats")]
        {
            defmt::write!(fmt, "Max usage: {}\n", self.max_usage);
            defmt::write!(fmt, "Total freed: {}\n", self.total_freed);
            defmt::write!(fmt, "Total allocated: {}\n", self.total_allocated);
        }
        defmt::write!(fmt, "Memory Layout:\n");
        for region in self.region_stats.iter() {
            if let Some(region) = region.as_ref() {
                defmt::write!(fmt, "{}\n", region);
            } else {
                defmt::write!(fmt, "Unused   | ");
                write_bar_defmt(fmt, 0);
                defmt::write!(fmt, " |\n");
            }
        }
    }
}

/// Internal stats to keep track across multiple regions.
#[cfg(feature = "internal-heap-stats")]
struct InternalHeapStats {
    max_usage: usize,
    total_allocated: usize,
    total_freed: usize,
}

/// A memory allocator
///
/// In addition to what Rust's memory allocator can do it allows to allocate
/// memory in regions satisfying specific needs.
pub struct EspHeap {
    heap: Mutex<RefCell<[Option<HeapRegion>; 3]>>,
    #[cfg(feature = "internal-heap-stats")]
    internal_heap_stats: Mutex<RefCell<InternalHeapStats>>,
}

impl EspHeap {
    /// Crate a new UNINITIALIZED heap allocator
    pub const fn empty() -> Self {
        EspHeap {
            heap: Mutex::new(RefCell::new([NON_REGION; 3])),
            #[cfg(feature = "internal-heap-stats")]
            internal_heap_stats: Mutex::new(RefCell::new(InternalHeapStats {
                max_usage: 0,
                total_allocated: 0,
                total_freed: 0,
            })),
        }
    }

    /// Add a memory region to the heap
    ///
    /// `heap_bottom` is a pointer to the location of the bottom of the heap.
    ///
    /// `size` is the size of the heap in bytes.
    ///
    /// You can add up to three regions per allocator.
    ///
    /// Note that:
    ///
    /// - Memory is allocated from the first suitable memory region first
    ///
    /// - The heap grows "upwards", towards larger addresses. Thus `end_addr`
    ///   must be larger than `start_addr`
    ///
    /// - The size of the heap is `(end_addr as usize) - (start_addr as usize)`.
    ///   The allocator won't use the byte at `end_addr`.
    ///
    /// # Safety
    ///
    /// - The supplied memory region must be available for the entire program (a
    ///   `'static` lifetime).
    /// - The supplied memory region must be exclusively available to the heap
    ///   only, no aliasing.
    /// - `size > 0`.
    pub unsafe fn add_region(&self, region: HeapRegion) {
        critical_section::with(|cs| {
            let mut regions = self.heap.borrow_ref_mut(cs);
            let free = regions
                .iter()
                .enumerate()
                .find(|v| v.1.is_none())
                .map(|v| v.0);

            if let Some(free) = free {
                regions[free] = Some(region);
            } else {
                panic!(
                    "Exceeded the maximum of {} heap memory regions",
                    regions.len()
                );
            }
        });
    }

    /// Returns an estimate of the amount of bytes in use in all memory regions.
    pub fn used(&self) -> usize {
        critical_section::with(|cs| {
            let regions = self.heap.borrow_ref(cs);
            let mut used = 0;
            for region in regions.iter() {
                if let Some(region) = region.as_ref() {
                    used += region.heap.used();
                }
            }
            used
        })
    }

    /// Return usage stats for the [Heap].
    ///
    /// Note:
    /// [HeapStats] directly implements [Display], so this function can be
    /// called from within `println!()` to pretty-print the usage of the
    /// heap.
    pub fn stats(&self) -> HeapStats {
        const EMPTY_REGION_STAT: Option<RegionStats> = None;
        let mut region_stats: [Option<RegionStats>; 3] = [EMPTY_REGION_STAT; 3];

        critical_section::with(|cs| {
            let mut used = 0;
            let mut free = 0;
            let regions = self.heap.borrow_ref(cs);
            for (id, region) in regions.iter().enumerate() {
                if let Some(region) = region.as_ref() {
                    let stats = region.stats();
                    free += stats.free;
                    used += stats.used;
                    region_stats[id] = Some(region.stats());
                }
            }

            cfg_if::cfg_if! {
                if #[cfg(feature = "internal-heap-stats")] {
                    let internal_heap_stats = self.internal_heap_stats.borrow_ref(cs);
                    HeapStats {
                        region_stats,
                        size: free + used,
                        current_usage: used,
                        max_usage: internal_heap_stats.max_usage,
                        total_allocated: internal_heap_stats.total_allocated,
                        total_freed: internal_heap_stats.total_freed,
                    }
                } else {
                    HeapStats {
                        region_stats,
                        size: free + used,
                        current_usage: used,
                    }
                }
            }
        })
    }

    /// Returns an estimate of the amount of bytes available.
    pub fn free(&self) -> usize {
        self.free_caps(EnumSet::empty())
    }

    /// The free heap satisfying the given requirements
    pub fn free_caps(&self, capabilities: EnumSet<MemoryCapability>) -> usize {
        critical_section::with(|cs| {
            let regions = self.heap.borrow_ref(cs);
            let mut free = 0;
            for region in regions.iter().filter(|region| {
                if region.is_some() {
                    region
                        .as_ref()
                        .unwrap()
                        .capabilities
                        .is_superset(capabilities)
                } else {
                    false
                }
            }) {
                if let Some(region) = region.as_ref() {
                    free += region.heap.free();
                }
            }
            free
        })
    }

    /// Allocate memory in a region satisfying the given requirements.
    ///
    /// # Safety
    ///
    /// This function is unsafe because undefined behavior can result
    /// if the caller does not ensure that `layout` has non-zero size.
    ///
    /// The allocated block of memory may or may not be initialized.
    pub unsafe fn alloc_caps(
        &self,
        capabilities: EnumSet<MemoryCapability>,
        layout: Layout,
    ) -> *mut u8 {
        critical_section::with(|cs| {
            #[cfg(feature = "internal-heap-stats")]
            let before = self.used();
            let mut regions = self.heap.borrow_ref_mut(cs);
            let mut iter = (*regions).iter_mut().filter(|region| {
                if region.is_some() {
                    region
                        .as_ref()
                        .unwrap()
                        .capabilities
                        .is_superset(capabilities)
                } else {
                    false
                }
            });

            let res = loop {
                if let Some(Some(region)) = iter.next() {
                    let res = region.heap.allocate_first_fit(layout);
                    if let Ok(res) = res {
                        break Some(res);
                    }
                } else {
                    break None;
                }
            };

            res.map_or(ptr::null_mut(), |allocation| {
                #[cfg(feature = "internal-heap-stats")]
                {
                    let mut internal_heap_stats = self.internal_heap_stats.borrow_ref_mut(cs);
                    drop(regions);
                    // We need to call used because [linked_list_allocator::Heap] does internal size
                    // alignment so we cannot use the size provided by the layout.
                    let used = self.used();

                    internal_heap_stats.total_allocated += used - before;
                    internal_heap_stats.max_usage =
                        core::cmp::max(internal_heap_stats.max_usage, used);
                }

                allocation.as_ptr()
            })
        })
    }
}

unsafe impl GlobalAlloc for EspHeap {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        self.alloc_caps(EnumSet::empty(), layout)
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        if ptr.is_null() {
            return;
        }

        critical_section::with(|cs| {
            #[cfg(feature = "internal-heap-stats")]
            let before = self.used();
            let mut regions = self.heap.borrow_ref_mut(cs);
            let mut iter = (*regions).iter_mut();

            while let Some(Some(region)) = iter.next() {
                if region.heap.bottom() <= ptr && region.heap.top() >= ptr {
                    region.heap.deallocate(NonNull::new_unchecked(ptr), layout);
                }
            }

            #[cfg(feature = "internal-heap-stats")]
            {
                let mut internal_heap_stats = self.internal_heap_stats.borrow_ref_mut(cs);
                drop(regions);
                // We need to call `used()` because [linked_list_allocator::Heap] does internal
                // size alignment so we cannot use the size provided by the
                // layout.
                internal_heap_stats.total_freed += before - self.used();
            }
        })
    }
}

#[cfg(feature = "nightly")]
unsafe impl Allocator for EspHeap {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let raw_ptr = unsafe { self.alloc(layout) };

        if raw_ptr.is_null() {
            return Err(AllocError);
        }

        let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
        Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        self.dealloc(ptr.as_ptr(), layout);
    }
}