esp_alloc/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
//! A `no_std` heap allocator for RISC-V and Xtensa processors from
//! Espressif. Supports all currently available ESP32 devices.
//!
//! **NOTE:** using this as your global allocator requires using Rust 1.68 or
//! greater, or the `nightly` release channel.
//!
//! # Using this as your Global Allocator
//!
//! ```rust
//! use esp_alloc as _;
//!
//! fn init_heap() {
//!     const HEAP_SIZE: usize = 32 * 1024;
//!     static mut HEAP: MaybeUninit<[u8; HEAP_SIZE]> = MaybeUninit::uninit();
//!
//!     unsafe {
//!         esp_alloc::HEAP.add_region(esp_alloc::HeapRegion::new(
//!             HEAP.as_mut_ptr() as *mut u8,
//!             HEAP_SIZE,
//!             esp_alloc::MemoryCapability::Internal.into(),
//!         ));
//!     }
//! }
//! ```
//!
//! # Using this with the nightly `allocator_api`-feature
//! Sometimes you want to have more control over allocations.
//!
//! For that, it's convenient to use the nightly `allocator_api`-feature,
//! which allows you to specify an allocator for single allocations.
//!
//! **NOTE:** To use this, you have to enable the crate's `nightly` feature
//! flag.
//!
//! Create and initialize an allocator to use in single allocations:
//! ```rust
//! static PSRAM_ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();
//!
//! fn init_psram_heap() {
//!     unsafe {
//!         PSRAM_ALLOCATOR.add_region(esp_alloc::HeapRegion::new(
//!             psram::psram_vaddr_start() as *mut u8,
//!             psram::PSRAM_BYTES,
//!             esp_alloc::MemoryCapability::Internal.into(),
//!         ));
//!     }
//! }
//! ```
//!
//! And then use it in an allocation:
//! ```rust
//! let large_buffer: Vec<u8, _> = Vec::with_capacity_in(1048576, &PSRAM_ALLOCATOR);
//! ```

#![no_std]
#![cfg_attr(feature = "nightly", feature(allocator_api))]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]

mod macros;

#[cfg(feature = "nightly")]
use core::alloc::{AllocError, Allocator};
use core::{
    alloc::{GlobalAlloc, Layout},
    cell::RefCell,
    ptr::{self, NonNull},
};

use critical_section::Mutex;
use enumset::{EnumSet, EnumSetType};
use linked_list_allocator::Heap;

/// The global allocator instance
#[global_allocator]
pub static HEAP: EspHeap = EspHeap::empty();

const NON_REGION: Option<HeapRegion> = None;

#[derive(EnumSetType)]
/// Describes the properties of a memory region
pub enum MemoryCapability {
    /// Memory must be internal; specifically it should not disappear when
    /// flash/spiram cache is switched off
    Internal,
    /// Memory must be in SPI RAM
    External,
}

/// A memory region to be used as heap memory
pub struct HeapRegion {
    heap: Heap,
    capabilities: EnumSet<MemoryCapability>,
}

impl HeapRegion {
    /// Create a new [HeapRegion] with the given capabilities
    ///
    /// # Safety
    ///
    /// - The supplied memory region must be available for the entire program
    ///   (`'static`).
    /// - The supplied memory region must be exclusively available to the heap
    ///   only, no aliasing.
    /// - `size > 0`.
    pub unsafe fn new(
        heap_bottom: *mut u8,
        size: usize,
        capabilities: EnumSet<MemoryCapability>,
    ) -> Self {
        let mut heap = Heap::empty();
        heap.init(heap_bottom, size);

        Self { heap, capabilities }
    }
}

/// A memory allocator
///
/// In addition to what Rust's memory allocator can do it allows to allocate
/// memory in regions satisfying specific needs.
pub struct EspHeap {
    heap: Mutex<RefCell<[Option<HeapRegion>; 3]>>,
}

impl EspHeap {
    /// Crate a new UNINITIALIZED heap allocator
    pub const fn empty() -> Self {
        EspHeap {
            heap: Mutex::new(RefCell::new([NON_REGION; 3])),
        }
    }

    /// Add a memory region to the heap
    ///
    /// `heap_bottom` is a pointer to the location of the bottom of the heap.
    ///
    /// `size` is the size of the heap in bytes.
    ///
    /// You can add up to three regions per allocator.
    ///
    /// Note that:
    ///
    /// - Memory is allocated from the first suitable memory region first
    ///
    /// - The heap grows "upwards", towards larger addresses. Thus `end_addr`
    ///   must be larger than `start_addr`
    ///
    /// - The size of the heap is `(end_addr as usize) - (start_addr as usize)`.
    ///   The allocator won't use the byte at `end_addr`.
    ///
    /// # Safety
    ///
    /// - The supplied memory region must be available for the entire program (a
    ///   `'static` lifetime).
    /// - The supplied memory region must be exclusively available to the heap
    ///   only, no aliasing.
    /// - `size > 0`.
    pub unsafe fn add_region(&self, region: HeapRegion) {
        critical_section::with(|cs| {
            let mut regions = self.heap.borrow_ref_mut(cs);
            let free = regions
                .iter()
                .enumerate()
                .find(|v| v.1.is_none())
                .map(|v| v.0);

            if let Some(free) = free {
                regions[free] = Some(region);
            } else {
                panic!(
                    "Exceeded the maximum of {} heap memory regions",
                    regions.len()
                );
            }
        });
    }

    /// Returns an estimate of the amount of bytes in use in all memory regions.
    pub fn used(&self) -> usize {
        critical_section::with(|cs| {
            let regions = self.heap.borrow_ref(cs);
            let mut used = 0;
            for region in regions.iter() {
                if let Some(region) = region.as_ref() {
                    used += region.heap.used();
                }
            }
            used
        })
    }

    /// Returns an estimate of the amount of bytes available.
    pub fn free(&self) -> usize {
        self.free_caps(EnumSet::empty())
    }

    /// The free heap satisfying the given requirements
    pub fn free_caps(&self, capabilities: EnumSet<MemoryCapability>) -> usize {
        critical_section::with(|cs| {
            let regions = self.heap.borrow_ref(cs);
            let mut free = 0;
            for region in regions.iter().filter(|region| {
                if region.is_some() {
                    region
                        .as_ref()
                        .unwrap()
                        .capabilities
                        .is_superset(capabilities)
                } else {
                    false
                }
            }) {
                if let Some(region) = region.as_ref() {
                    free += region.heap.free();
                }
            }
            free
        })
    }

    /// Allocate memory in a region satisfying the given requirements.
    ///
    /// # Safety
    ///
    /// This function is unsafe because undefined behavior can result
    /// if the caller does not ensure that `layout` has non-zero size.
    ///
    /// The allocated block of memory may or may not be initialized.
    pub unsafe fn alloc_caps(
        &self,
        capabilities: EnumSet<MemoryCapability>,
        layout: Layout,
    ) -> *mut u8 {
        critical_section::with(|cs| {
            let mut regions = self.heap.borrow_ref_mut(cs);
            let mut iter = (*regions).iter_mut().filter(|region| {
                if region.is_some() {
                    region
                        .as_ref()
                        .unwrap()
                        .capabilities
                        .is_superset(capabilities)
                } else {
                    false
                }
            });

            let res = loop {
                if let Some(Some(region)) = iter.next() {
                    let res = region.heap.allocate_first_fit(layout);
                    if let Ok(res) = res {
                        break Some(res);
                    }
                } else {
                    break None;
                }
            };

            res.map_or(ptr::null_mut(), |allocation| allocation.as_ptr())
        })
    }
}

unsafe impl GlobalAlloc for EspHeap {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        self.alloc_caps(EnumSet::empty(), layout)
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        if ptr.is_null() {
            return;
        }

        critical_section::with(|cs| {
            let mut regions = self.heap.borrow_ref_mut(cs);
            let mut iter = (*regions).iter_mut();

            while let Some(Some(region)) = iter.next() {
                if region.heap.bottom() <= ptr && region.heap.top() >= ptr {
                    region.heap.deallocate(NonNull::new_unchecked(ptr), layout);
                }
            }
        })
    }
}

#[cfg(feature = "nightly")]
unsafe impl Allocator for EspHeap {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let raw_ptr = unsafe { self.alloc(layout) };

        if raw_ptr.is_null() {
            return Err(AllocError);
        }

        let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
        Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        self.dealloc(ptr.as_ptr(), layout);
    }
}