esp_alloc/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
//! A `no_std` heap allocator for RISC-V and Xtensa processors from
//! Espressif. Supports all currently available ESP32 devices.
//!
//! **NOTE:** using this as your global allocator requires using Rust 1.68 or
//! greater, or the `nightly` release channel.
//!
//! # Using this as your Global Allocator
//!
//! ```rust
//! use esp_alloc as _;
//!
//! fn init_heap() {
//! const HEAP_SIZE: usize = 32 * 1024;
//! static mut HEAP: MaybeUninit<[u8; HEAP_SIZE]> = MaybeUninit::uninit();
//!
//! unsafe {
//! esp_alloc::HEAP.add_region(esp_alloc::HeapRegion::new(
//! HEAP.as_mut_ptr() as *mut u8,
//! HEAP_SIZE,
//! esp_alloc::MemoryCapability::Internal.into(),
//! ));
//! }
//! }
//! ```
//!
//! # Using this with the nightly `allocator_api`-feature
//! Sometimes you want to have more control over allocations.
//!
//! For that, it's convenient to use the nightly `allocator_api`-feature,
//! which allows you to specify an allocator for single allocations.
//!
//! **NOTE:** To use this, you have to enable the crate's `nightly` feature
//! flag.
//!
//! Create and initialize an allocator to use in single allocations:
//! ```rust
//! static PSRAM_ALLOCATOR: esp_alloc::EspHeap = esp_alloc::EspHeap::empty();
//!
//! fn init_psram_heap() {
//! unsafe {
//! PSRAM_ALLOCATOR.add_region(esp_alloc::HeapRegion::new(
//! psram::psram_vaddr_start() as *mut u8,
//! psram::PSRAM_BYTES,
//! esp_alloc::MemoryCapability::Internal.into(),
//! ));
//! }
//! }
//! ```
//!
//! And then use it in an allocation:
//! ```rust
//! let large_buffer: Vec<u8, _> = Vec::with_capacity_in(1048576, &PSRAM_ALLOCATOR);
//! ```
#![no_std]
#![cfg_attr(feature = "nightly", feature(allocator_api))]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]
mod macros;
#[cfg(feature = "nightly")]
use core::alloc::{AllocError, Allocator};
use core::{
alloc::{GlobalAlloc, Layout},
cell::RefCell,
ptr::{self, NonNull},
};
use critical_section::Mutex;
use enumset::{EnumSet, EnumSetType};
use linked_list_allocator::Heap;
/// The global allocator instance
#[global_allocator]
pub static HEAP: EspHeap = EspHeap::empty();
const NON_REGION: Option<HeapRegion> = None;
#[derive(EnumSetType)]
/// Describes the properties of a memory region
pub enum MemoryCapability {
/// Memory must be internal; specifically it should not disappear when
/// flash/spiram cache is switched off
Internal,
/// Memory must be in SPI RAM
External,
}
/// A memory region to be used as heap memory
pub struct HeapRegion {
heap: Heap,
capabilities: EnumSet<MemoryCapability>,
}
impl HeapRegion {
/// Create a new [HeapRegion] with the given capabilities
///
/// # Safety
///
/// - The supplied memory region must be available for the entire program
/// (`'static`).
/// - The supplied memory region must be exclusively available to the heap
/// only, no aliasing.
/// - `size > 0`.
pub unsafe fn new(
heap_bottom: *mut u8,
size: usize,
capabilities: EnumSet<MemoryCapability>,
) -> Self {
let mut heap = Heap::empty();
heap.init(heap_bottom, size);
Self { heap, capabilities }
}
}
/// A memory allocator
///
/// In addition to what Rust's memory allocator can do it allows to allocate
/// memory in regions satisfying specific needs.
pub struct EspHeap {
heap: Mutex<RefCell<[Option<HeapRegion>; 3]>>,
}
impl EspHeap {
/// Crate a new UNINITIALIZED heap allocator
pub const fn empty() -> Self {
EspHeap {
heap: Mutex::new(RefCell::new([NON_REGION; 3])),
}
}
/// Add a memory region to the heap
///
/// `heap_bottom` is a pointer to the location of the bottom of the heap.
///
/// `size` is the size of the heap in bytes.
///
/// You can add up to three regions per allocator.
///
/// Note that:
///
/// - Memory is allocated from the first suitable memory region first
///
/// - The heap grows "upwards", towards larger addresses. Thus `end_addr`
/// must be larger than `start_addr`
///
/// - The size of the heap is `(end_addr as usize) - (start_addr as usize)`.
/// The allocator won't use the byte at `end_addr`.
///
/// # Safety
///
/// - The supplied memory region must be available for the entire program (a
/// `'static` lifetime).
/// - The supplied memory region must be exclusively available to the heap
/// only, no aliasing.
/// - `size > 0`.
pub unsafe fn add_region(&self, region: HeapRegion) {
critical_section::with(|cs| {
let mut regions = self.heap.borrow_ref_mut(cs);
let free = regions
.iter()
.enumerate()
.find(|v| v.1.is_none())
.map(|v| v.0);
if let Some(free) = free {
regions[free] = Some(region);
} else {
panic!(
"Exceeded the maximum of {} heap memory regions",
regions.len()
);
}
});
}
/// Returns an estimate of the amount of bytes in use in all memory regions.
pub fn used(&self) -> usize {
critical_section::with(|cs| {
let regions = self.heap.borrow_ref(cs);
let mut used = 0;
for region in regions.iter() {
if let Some(region) = region.as_ref() {
used += region.heap.used();
}
}
used
})
}
/// Returns an estimate of the amount of bytes available.
pub fn free(&self) -> usize {
self.free_caps(EnumSet::empty())
}
/// The free heap satisfying the given requirements
pub fn free_caps(&self, capabilities: EnumSet<MemoryCapability>) -> usize {
critical_section::with(|cs| {
let regions = self.heap.borrow_ref(cs);
let mut free = 0;
for region in regions.iter().filter(|region| {
if region.is_some() {
region
.as_ref()
.unwrap()
.capabilities
.is_superset(capabilities)
} else {
false
}
}) {
if let Some(region) = region.as_ref() {
free += region.heap.free();
}
}
free
})
}
/// Allocate memory in a region satisfying the given requirements.
///
/// # Safety
///
/// This function is unsafe because undefined behavior can result
/// if the caller does not ensure that `layout` has non-zero size.
///
/// The allocated block of memory may or may not be initialized.
pub unsafe fn alloc_caps(
&self,
capabilities: EnumSet<MemoryCapability>,
layout: Layout,
) -> *mut u8 {
critical_section::with(|cs| {
let mut regions = self.heap.borrow_ref_mut(cs);
let mut iter = (*regions).iter_mut().filter(|region| {
if region.is_some() {
region
.as_ref()
.unwrap()
.capabilities
.is_superset(capabilities)
} else {
false
}
});
let res = loop {
if let Some(Some(region)) = iter.next() {
let res = region.heap.allocate_first_fit(layout);
if let Ok(res) = res {
break Some(res);
}
} else {
break None;
}
};
res.map_or(ptr::null_mut(), |allocation| allocation.as_ptr())
})
}
}
unsafe impl GlobalAlloc for EspHeap {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.alloc_caps(EnumSet::empty(), layout)
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
if ptr.is_null() {
return;
}
critical_section::with(|cs| {
let mut regions = self.heap.borrow_ref_mut(cs);
let mut iter = (*regions).iter_mut();
while let Some(Some(region)) = iter.next() {
if region.heap.bottom() <= ptr && region.heap.top() >= ptr {
region.heap.deallocate(NonNull::new_unchecked(ptr), layout);
}
}
})
}
}
#[cfg(feature = "nightly")]
unsafe impl Allocator for EspHeap {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
let raw_ptr = unsafe { self.alloc(layout) };
if raw_ptr.is_null() {
return Err(AllocError);
}
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
self.dealloc(ptr.as_ptr(), layout);
}
}