Crate error_chain [−] [src]
A library for consistent and reliable error handling
This crate defines an opinionated strategy for error handling in Rust, built on the following principles:
- No error should ever be discarded. This library primarily
makes it easy to "chain" errors with the
chain_errmethod. - Introducing new errors is trivial. Simple errors can be introduced at the error site with just a string.
- Handling errors is possible with pattern matching.
- Conversions between error types are done in an automatic and
consistent way -
Fromconversion behavior is never specified explicitly. - Errors implement Send.
- Errors can carry backtraces.
Similar to other libraries like error-type and quick-error, this
library defines a macro, error_chain! that declares the types
and implementation boilerplate necessary for fulfilling a
particular error-handling strategy. Most importantly it defines
a custom error type (called Error by convention) and the From
conversions that let the try! macro and ? operator work.
This library differs in a few ways from previous error libs:
- Instead of defining the custom
Errortype as an enum, it is a struct containing anErrorKind(which defines thedescriptionanddisplaymethods for the error), an opaque, optional, boxedstd::error::Error + Send + 'staticobject (which defines thecause, and establishes the links in the error chain), and aBacktrace. - The macro also defines a
ResultExttrait that defines achain_errmethod. This method on all `std::error::Error + Send- 'static` types extends the error chain by boxing the current error into an opaque object and putting it inside a new concrete error.
- It provides automatic
Fromconversions between other error types defined by theerror_chain!that preserve type information, and facilitate seamless error composition and matching of composed errors. - It provides automatic
Fromconversions between any other error type that hides the type of the other error in thecausebox. - If
RUST_BACKTRACEis enabled, it collects a single backtrace at the earliest opportunity and propagates it down the stack throughFromandResultExtconversions.
To accomplish its goals it makes some tradeoffs:
- The split between the
ErrorandErrorKindtypes can make it slightly more cumbersome to instantiate new (unchained) errors, requiring anIntoorFromconversion; as well as slightly more cumbersome to match on errors with another layer of types to match. - Because the error type contains
std::error::Error + Send + 'staticobjects, it can't implementPartialEqfor easy comparisons.
Quick start
See https://github.com/brson/error-chain/blob/master/examples/quickstart.rs.
Declaring error types
Generally, you define one family of error types per crate, though it's also perfectly fine to define error types on a finer-grained basis, such as per module.
Assuming you are using crate-level error types, typically you will
define an errors module and inside it call error_chain!:
mod other_error { error_chain! {} } error_chain! { // The type defined for this error. These are the conventional // and recommended names, but they can be arbitrarily chosen. // It is also possible to leave this block out entirely, or // leave it empty, and these names will be used automatically. types { Error, ErrorKind, ResultExt, Result; } // Without the `Result` wrapper: // // types { // Error, ErrorKind, ResultExt; // } // Automatic conversions between this error chain and other // error chains. In this case, it will e.g. generate an // `ErrorKind` variant called `Dist` which in turn contains // the `rustup_dist::ErrorKind`, with conversions from // `rustup_dist::Error`. // // Optionally, some attributes can be added to a variant. // // This section can be empty. links { Another(other_error::Error, other_error::ErrorKind) #[cfg(unix)]; } // Automatic conversions between this error chain and other // error types not defined by the `error_chain!`. These will be // wrapped in a new error with, in this case, the // `ErrorKind::Temp` variant. The description and cause will // forward to the description and cause of the original error. // // Optionally, some attributes can be added to a variant. // // This section can be empty. foreign_links { Fmt(::std::fmt::Error); Io(::std::io::Error) #[cfg(unix)]; } // Define additional `ErrorKind` variants. The syntax here is // the same as `quick_error!`, but the `from()` and `cause()` // syntax is not supported. errors { InvalidToolchainName(t: String) { description("invalid toolchain name") display("invalid toolchain name: '{}'", t) } } }
Each section, types, links, foreign_links, and errors may
be omitted if it is empty.
This populates the module with a number of definitions,
the most important of which are the Error type
and the ErrorKind type. An example of generated code can be found in the
example_generated module.
Returning new errors
Introducing new error chains, with a string message:
fn foo() -> Result<()> { Err("foo error!".into()) }
Introducing new error chains, with an ErrorKind:
error_chain! { errors { FooError } } fn foo() -> Result<()> { Err(ErrorKind::FooError.into()) }
Note that the return type is the typedef Result, which is
defined by the macro as pub type Result<T> = ::std::result::Result<T, Error>. Note that in both cases
.into() is called to convert a type into the Error type; both
strings and ErrorKind have From conversions to turn them into
Error.
When the error is emitted inside a try! macro or behind the
? operator, the explicit conversion isn't needed; try! will
automatically convert Err(ErrorKind) to Err(Error). So the
below is equivalent to the previous:
fn foo() -> Result<()> { Ok(try!(Err(ErrorKind::FooError))) } fn bar() -> Result<()> { Ok(try!(Err("bogus!"))) }
Chaining errors
To extend the error chain:
let res: Result<()> = do_something().chain_err(|| "something went wrong");
chain_err can be called on any Result type where the contained
error type implements std::error::Error + Send + 'static. If
the Result is an Err then chain_err evaluates the closure,
which returns some type that can be converted to ErrorKind,
boxes the original error to store as the cause, then returns a new
error containing the original error.
Matching errors
error-chain error variants are matched with simple patterns.
Error is a tuple struct and it's first field is the ErrorKind,
making dispactching on error kinds relatively compact:
error_chain! { errors { InvalidToolchainName(t: String) { description("invalid toolchain name") display("invalid toolchain name: '{}'", t) } } } match Error::from("error!") { Error(ErrorKind::InvalidToolchainName(_), _) => { } Error(ErrorKind::Msg(_), _) => { } }
Chained errors are also matched with (relatively) compact syntax
mod utils { error_chain! { errors { BadStuff { description("bad stuff") } } } } mod app { error_chain! { links { Utils(::utils::Error, ::utils::ErrorKind); } } } match app::Error::from("error!") { app::Error(app::ErrorKind::Utils(utils::ErrorKind::BadStuff), _) => { } _ => { } }
Foreign links
Errors that do not conform to the same conventions as this library
can still be included in the error chain. They are considered "foreign
errors", and are declared using the foreign_links block of the
error_chain! macro. Errors are automatically created from
foreign errors by the try! macro.
Foreign links and regular links have one crucial difference:
From conversions for regular links do not introduce a new error
into the error chain, while conversions for foreign links always
introduce a new error into the error chain. So for the example
above all errors deriving from the temp::Error type will be
presented to the user as a new ErrorKind::Temp variant, and the
cause will be the original temp::Error error. In contrast, when
rustup_utils::Error is converted to Error the two ErrorKinds
are converted between each other to create a new Error but the
old error is discarded; there is no "cause" created from the
original error.
Backtraces
If the RUST_BACKTRACE environment variable is set to anything
but 0, the earliest non-foreign error to be generated creates
a single backtrace, which is passed through all From conversions
and chain_err invocations of compatible types. To read the
backtrace just call the backtrace() method.
Backtrace generation can be disabled by turning off the backtrace feature.
Iteration
The iter method returns an iterator over the chain of error boxes.
Modules
| example_generated |
This modules show an example of code generated by the macro. IT MUST NOT BE USED OUTSIDE THIS CRATE. |
Macros
| error_chain |
This macro is used for handling of duplicated and out-of-order fields. For
the exact rules, see |
| error_chain_processed |
Prefer to use |
| quick_error |
Structs
| Backtrace |
Representation of an owned and self-contained backtrace. |
| ErrorChainIter |
Iterator over the error chain using the |
Traits
| ChainedError |
This trait is implemented on all the errors generated by the |