1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//! Discrete logarithm signature protocol

use super::wscalar::Wscalar;
use super::ProverMessage;
use ergo_chain_types::EcPoint;
use ergotree_ir::serialization::SigmaSerializable;

/// a = g^r, b = h^r
#[derive(PartialEq, Eq, Debug, Clone)]
#[cfg_attr(feature = "json", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(proptest_derive::Arbitrary))]
pub struct FirstDhTupleProverMessage {
    #[cfg_attr(feature = "json", serde(rename = "a"))]
    a: Box<EcPoint>,
    #[cfg_attr(feature = "json", serde(rename = "b"))]
    b: Box<EcPoint>,
}

impl FirstDhTupleProverMessage {
    /// First message from the prover (message `a` and `b` of `SigmaProtocol`) for DhTuple case
    pub fn new(a: EcPoint, b: EcPoint) -> Self {
        Self {
            a: a.into(),
            b: b.into(),
        }
    }
}

impl ProverMessage for FirstDhTupleProverMessage {
    #[allow(clippy::unwrap_used)] // since only EcPoint is serialized here it's safe to unwrap
    fn bytes(&self) -> Vec<u8> {
        let mut res = self.a.sigma_serialize_bytes().unwrap();
        res.append(self.b.sigma_serialize_bytes().unwrap().as_mut());
        res
    }
}

/// Second message from the prover (message `z` of `SigmaProtocol`) for DhTuple case
//z = r + ew mod q
#[derive(PartialEq, Eq, Debug, Clone)]
#[cfg_attr(feature = "arbitrary", derive(proptest_derive::Arbitrary))]
pub struct SecondDhTupleProverMessage {
    /// message `z`
    pub z: Wscalar,
}

/// Interactive prover
pub mod interactive_prover {

    use std::ops::Mul;

    use super::*;
    use crate::sigma_protocol::crypto_utils;
    use crate::sigma_protocol::private_input::DhTupleProverInput;
    use crate::sigma_protocol::Challenge;
    use ergotree_ir::sigma_protocol::dlog_group;
    use ergotree_ir::sigma_protocol::sigma_boolean::ProveDhTuple;
    use k256::Scalar;

    /// Step 5 from <https://ergoplatform.org/docs/ErgoScript.pdf>
    /// For every leaf marked “simulated”, use the simulator of the sigma protocol for that leaf
    /// to compute the commitment "a" and the response "z", given the challenge "e" that
    /// is already stored in the leaf
    pub(crate) fn simulate(
        public_input: &ProveDhTuple,
        challenge: &Challenge,
    ) -> (FirstDhTupleProverMessage, SecondDhTupleProverMessage) {
        use ergo_chain_types::ec_point::exponentiate;
        //SAMPLE a random z <- Zq
        let z = dlog_group::random_scalar_in_group_range(crypto_utils::secure_rng());

        // COMPUTE a = g^z*u^(-e) and b = h^z*v^{-e}  (where -e here means -e mod q)
        let e: Scalar = challenge.clone().into();
        let minus_e = e.negate();
        let h_to_z = exponentiate(&public_input.h, &z);
        let g_to_z = exponentiate(&public_input.g, &z);
        let u_to_minus_e = exponentiate(&public_input.u, &minus_e);
        let v_to_minus_e = exponentiate(&public_input.v, &minus_e);
        let a = g_to_z.mul(&u_to_minus_e);
        let b = h_to_z.mul(&v_to_minus_e);
        (
            FirstDhTupleProverMessage::new(a, b),
            SecondDhTupleProverMessage { z: z.into() },
        )
    }

    /// Step 6 from <https://ergoplatform.org/docs/ErgoScript.pdf>
    /// For every leaf marked “real”, use the first prover step of the sigma protocol for
    /// that leaf to compute the necessary randomness "r" and the commitment "a"
    ///
    /// In this case (DH tuple) "a" is also a tuple
    pub fn first_message(public_input: &ProveDhTuple) -> (Wscalar, FirstDhTupleProverMessage) {
        use ergo_chain_types::ec_point::exponentiate;
        let r = dlog_group::random_scalar_in_group_range(crypto_utils::secure_rng());
        let a = exponentiate(&public_input.g, &r);
        let b = exponentiate(&public_input.h, &r);
        (r.into(), FirstDhTupleProverMessage::new(a, b))
    }

    /// Step 9 part 2 from <https://ergoplatform.org/docs/ErgoScript.pdf>
    /// compute its response "z" according to the second prover step(step 5 in whitepaper)
    /// of the sigma protocol given the randomness "r"(rnd) used for the commitment "a",
    /// the challenge "e", and witness w.
    pub(crate) fn second_message(
        private_input: &DhTupleProverInput,
        rnd: &Wscalar,
        challenge: &Challenge,
    ) -> SecondDhTupleProverMessage {
        let e: Scalar = challenge.clone().into();
        // modulo multiplication, no need to explicit mod op
        let ew = e.mul(private_input.w.as_scalar_ref());
        // modulo addition, no need to explicit mod op
        let z = rnd.as_scalar_ref().add(&ew);
        SecondDhTupleProverMessage { z: z.into() }
    }

    /// The function computes initial prover's commitment to randomness
    /// ("a" message of the sigma-protocol, which in this case has two parts "a" and "b")
    /// based on the verifier's challenge ("e")
    /// and prover's response ("z")
    ///
    /// g^z = a*u^e, h^z = b*v^e  => a = g^z/u^e, b = h^z/v^e
    #[allow(clippy::many_single_char_names)]
    pub fn compute_commitment(
        proposition: &ProveDhTuple,
        challenge: &Challenge,
        second_message: &SecondDhTupleProverMessage,
    ) -> (EcPoint, EcPoint) {
        let g = proposition.g.clone();
        let h = proposition.h.clone();
        let u = proposition.u.clone();
        let v = proposition.v.clone();

        let z = second_message.z.clone();

        let e: Scalar = challenge.clone().into();

        use ergo_chain_types::ec_point::{exponentiate, inverse};

        let g_to_z = exponentiate(&g, z.as_scalar_ref());
        let h_to_z = exponentiate(&h, z.as_scalar_ref());

        let u_to_e = exponentiate(&u, &e);
        let v_to_e = exponentiate(&v, &e);

        let a = g_to_z.mul(&inverse(&u_to_e));
        let b = h_to_z.mul(&inverse(&v_to_e));
        (a, b)
    }
}