1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
use super::*;

pub(super) fn expr(p: &mut Parser) -> Option<CompletedMarker> {
    expr_binding_power(p, 0)
}

// from https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
//
// From Precedence to Binding Power
// I have a confession to make: I am always confused by “high precedence” and “low precedence”. In
// a + b * c, addition has a lower precedence, but it is at the top of the parse tree…​
//
// So instead, I find thinking in terms of binding power more intuitive.
//
// expr:   A       +       B       *       C
// power:      3       3       5       5
// The * is stronger, it has more power to hold together B and C, and so the expression is parsed
// as A + (B * C).
//
// What about associativity though? In A + B + C all operators seem to have the same power, and it
// is unclear which + to fold first. But this can also be modelled with power, if we make it
// slightly asymmetric:
//
// expr:      A       +       B       +       C
// power:  0      3      3.1      3      3.1     0
// Here, we pumped the right power of + just a little bit, so that it holds the right operand
// tighter. We also added zeros at both ends, as there are no operators to bind from the sides.
// Here, the first (and only the first) + holds both of its arguments tighter than the neighbors,
// so we can reduce it:
//
// expr:     (A + B)     +     C
// power:  0          3    3.1    0
// Now we can fold the second plus and get (A + B) + C. Or, in terms of the syntax tree, the second
// + really likes its right operand more than the left one, so it rushes to get hold of C. While he
// does that, the first + captures both A and B, as they are uncontested.
//
// What Pratt parsing does is that it finds these badass, stronger than neighbors operators, by
// processing the string left to right. We are almost at a point where we finally start writing
// some code, but let’s first look at the other running example. We will use function composition
// operator, . (dot) as a right associative operator with a high binding power. That is, f . g . h
// is parsed as f . (g . h), or, in terms of power
//
//   f     .    g     .    h
//   0   8.5    8   8.5    8   0
//
// ...
//
// And now comes the tricky bit, where we introduce recursion into the picture. Let’s think about
// this example (with powers below):
//
// a   +   b   *   c   *   d   +   e
//   1   2   3   4   3   4   1   2
//   The cursor is at the first +, we know that the left bp is 1 and the right one is 2. The lhs
//   stores a. The next operator after + is *, so we shouldn’t add b to a. The problem is that we
//   haven’t yet seen the next operator, we are just past +. Can we add a lookahead? Looks like
//   no — we’d have to look past all of b, c and d to find the next operator with lower binding
//   power, which sounds pretty unbounded. But we are onto something! Our current right priority is
//   2, and, to be able to fold the expression, we need to find the next operator with lower
//   priority. So let’s recursively call expr_bp starting at b, but also tell it to stop as soon as
//   bp drops below 2. This necessitates the addition of min_bp argument to the main function.
//
fn expr_binding_power(p: &mut Parser, minimum_binding_power: u8) -> Option<CompletedMarker> {
    let mut lhs = lhs(p)?;

    loop {
        let op = if p.at(TokenKind::Plus) {
            BinaryOp::Add
        } else if p.at(TokenKind::Minus) {
            BinaryOp::Sub
        } else if p.at(TokenKind::Star) {
            BinaryOp::Mul
        } else if p.at(TokenKind::Slash) {
            BinaryOp::Div
        } else {
            // We’re not at an operator; we don’t know what to do next, so we return and let the
            // caller decide.
            break;
        };

        let (left_binding_power, right_binding_power) = op.binding_power();

        if left_binding_power < minimum_binding_power {
            break;
        }

        // Eat the operator’s token.
        p.bump();

        //  And here we bump past the operator itself and make the recursive call. Note how we use
        //  left_binding_power to check against minimum_binding_power, and right_binding_power
        //  as the new minimum_binding_power of the recursive call. So, you can think
        //  about minimum_binding_power as the binding power of the operator to the left of the current expressions.
        //  https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html
        let m = lhs.precede(p);
        let parsed_rhs = expr_binding_power(p, right_binding_power).is_some();
        lhs = m.complete(p, SyntaxKind::InfixExpr);

        if !parsed_rhs {
            break;
        }
    }

    Some(lhs)
}

fn lhs(p: &mut Parser) -> Option<CompletedMarker> {
    let cm = if p.at(TokenKind::IntNumber) {
        int_number(p)
    } else if p.at(TokenKind::LongNumber) {
        long_number(p)
    } else if p.at(TokenKind::Ident) {
        ident(p)
        // variable_ref(p)
        // } else if p.at(TokenKind::ValKw) {
        //     variable_ref(p)
    } else if p.at(TokenKind::Minus) {
        prefix_expr(p)
    } else if p.at(TokenKind::LParen) {
        paren_expr(p)
    } else {
        p.error();
        return None;
    };

    Some(cm)
}

enum BinaryOp {
    Add,
    Sub,
    Mul,
    Div,
}

impl BinaryOp {
    fn binding_power(&self) -> (u8, u8) {
        match self {
            Self::Add | Self::Sub => (1, 2),
            Self::Mul | Self::Div => (3, 4),
        }
    }
}

enum UnaryOp {
    Neg,
}

impl UnaryOp {
    fn binding_power(&self) -> ((), u8) {
        match self {
            Self::Neg => ((), 5),
        }
    }
}

fn int_number(p: &mut Parser) -> CompletedMarker {
    assert!(p.at(TokenKind::IntNumber));
    let m = p.start();
    p.bump();
    m.complete(p, SyntaxKind::IntNumber)
}

fn long_number(p: &mut Parser) -> CompletedMarker {
    assert!(p.at(TokenKind::LongNumber));
    let m = p.start();
    p.bump();
    m.complete(p, SyntaxKind::LongNumber)
}

// fn variable_ref(p: &mut Parser) -> CompletedMarker {
//     assert!(p.at(TokenKind::Ident));

//     let m = p.start();
//     p.bump();
//     m.complete(p, SyntaxKind::VariableRef)
// }

fn ident(p: &mut Parser) -> CompletedMarker {
    assert!(p.at(TokenKind::Ident));

    let m = p.start();
    p.bump();
    m.complete(p, SyntaxKind::Ident)
}

fn prefix_expr(p: &mut Parser) -> CompletedMarker {
    assert!(p.at(TokenKind::Minus));

    let m = p.start();

    let op = UnaryOp::Neg;
    let ((), right_binding_power) = op.binding_power();

    // Eat the operator’s token.
    p.bump();

    expr_binding_power(p, right_binding_power);

    m.complete(p, SyntaxKind::PrefixExpr)
}

fn paren_expr(p: &mut Parser) -> CompletedMarker {
    assert!(p.at(TokenKind::LParen));

    let m = p.start();
    p.bump();
    expr_binding_power(p, 0);
    p.expect(TokenKind::RParen);

    m.complete(p, SyntaxKind::ParenExpr)
}

#[cfg(test)]
mod tests {
    use crate::parser::check;
    use expect_test::expect;

    #[test]
    fn parse_number() {
        check(
            "123",
            expect![[r#"
                Root@0..3
                  IntNumber@0..3
                    IntNumber@0..3 "123""#]],
        );
    }

    #[test]
    fn parse_number_preceded_by_whitespace() {
        check(
            "  9876",
            expect![[r#"
                Root@0..6
                  Whitespace@0..2 "  "
                  IntNumber@2..6
                    IntNumber@2..6 "9876""#]],
        );
    }

    #[test]
    fn parse_number_followed_by_whitespace() {
        check(
            "999  ",
            expect![[r#"
                Root@0..5
                  IntNumber@0..5
                    IntNumber@0..3 "999"
                    Whitespace@3..5 "  ""#]],
        );
    }

    #[test]
    fn parse_number_surrounded_by_whitespace() {
        check(
            " 123    ",
            expect![[r#"
                Root@0..8
                  Whitespace@0..1 " "
                  IntNumber@1..8
                    IntNumber@1..4 "123"
                    Whitespace@4..8 "    ""#]],
        );
    }

    #[test]
    fn parse_simple_infix_expression() {
        check(
            "1+3",
            expect![[r#"
                Root@0..3
                  InfixExpr@0..3
                    IntNumber@0..1
                      IntNumber@0..1 "1"
                    Plus@1..2 "+"
                    IntNumber@2..3
                      IntNumber@2..3 "3""#]],
        );
    }

    #[test]
    fn parse_left_associative_infix_expression() {
        check(
            "1+2+3",
            expect![[r#"
                Root@0..5
                  InfixExpr@0..5
                    InfixExpr@0..3
                      IntNumber@0..1
                        IntNumber@0..1 "1"
                      Plus@1..2 "+"
                      IntNumber@2..3
                        IntNumber@2..3 "2"
                    Plus@3..4 "+"
                    IntNumber@4..5
                      IntNumber@4..5 "3""#]],
        );
    }

    #[test]
    fn parse_infix_expression_with_mixed_binding_power() {
        check(
            "1+2*3-5",
            expect![[r#"
                Root@0..7
                  InfixExpr@0..7
                    InfixExpr@0..5
                      IntNumber@0..1
                        IntNumber@0..1 "1"
                      Plus@1..2 "+"
                      InfixExpr@2..5
                        IntNumber@2..3
                          IntNumber@2..3 "2"
                        Star@3..4 "*"
                        IntNumber@4..5
                          IntNumber@4..5 "3"
                    Minus@5..6 "-"
                    IntNumber@6..7
                      IntNumber@6..7 "5""#]],
        );
    }

    #[test]
    fn parse_infix_expression_with_whitespace() {
        check(
            " 1 +  2* 3 ",
            expect![[r#"
                Root@0..11
                  Whitespace@0..1 " "
                  InfixExpr@1..11
                    IntNumber@1..3
                      IntNumber@1..2 "1"
                      Whitespace@2..3 " "
                    Plus@3..4 "+"
                    Whitespace@4..6 "  "
                    InfixExpr@6..11
                      IntNumber@6..7
                        IntNumber@6..7 "2"
                      Star@7..8 "*"
                      Whitespace@8..9 " "
                      IntNumber@9..11
                        IntNumber@9..10 "3"
                        Whitespace@10..11 " ""#]],
        );
    }

    #[test]
    fn parse_infix_expression_interspersed_with_comments() {
        check(
            "
1
  + 1 // Add one
  + 10 // Add ten",
            expect![[r#"
                Root@0..37
                  Whitespace@0..1 "\n"
                  InfixExpr@1..37
                    InfixExpr@1..22
                      IntNumber@1..5
                        IntNumber@1..2 "1"
                        Whitespace@2..5 "\n  "
                      Plus@5..6 "+"
                      Whitespace@6..7 " "
                      IntNumber@7..22
                        IntNumber@7..8 "1"
                        Whitespace@8..9 " "
                        Comment@9..19 "// Add one"
                        Whitespace@19..22 "\n  "
                    Plus@22..23 "+"
                    Whitespace@23..24 " "
                    IntNumber@24..37
                      IntNumber@24..26 "10"
                      Whitespace@26..27 " "
                      Comment@27..37 "// Add ten""#]],
        );
    }

    #[test]
    fn do_not_parse_operator_if_gettting_rhs_failed() {
        check(
            "(2+",
            expect![[r#"
                Root@0..3
                  ParenExpr@0..3
                    LParen@0..1 "("
                    InfixExpr@1..3
                      IntNumber@1..2
                        IntNumber@1..2 "2"
                      Plus@2..3 "+"
                error: expected number, number, identifier, ‘-’ or ‘(’
                error: expected ‘)’"#]],
        );
    }

    #[test]
    fn parse_negation() {
        check(
            "-11",
            expect![[r#"
                Root@0..3
                  PrefixExpr@0..3
                    Minus@0..1 "-"
                    IntNumber@1..3
                      IntNumber@1..3 "11""#]],
        );
    }

    #[test]
    fn negation_has_higher_binding_power_than_binary_operators() {
        check(
            "-20+21",
            expect![[r#"
                Root@0..6
                  InfixExpr@0..6
                    PrefixExpr@0..3
                      Minus@0..1 "-"
                      IntNumber@1..3
                        IntNumber@1..3 "20"
                    Plus@3..4 "+"
                    IntNumber@4..6
                      IntNumber@4..6 "21""#]],
        );
    }

    #[test]
    fn parse_nested_parentheses() {
        check(
            "((((((11))))))",
            expect![[r#"
                Root@0..14
                  ParenExpr@0..14
                    LParen@0..1 "("
                    ParenExpr@1..13
                      LParen@1..2 "("
                      ParenExpr@2..12
                        LParen@2..3 "("
                        ParenExpr@3..11
                          LParen@3..4 "("
                          ParenExpr@4..10
                            LParen@4..5 "("
                            ParenExpr@5..9
                              LParen@5..6 "("
                              IntNumber@6..8
                                IntNumber@6..8 "11"
                              RParen@8..9 ")"
                            RParen@9..10 ")"
                          RParen@10..11 ")"
                        RParen@11..12 ")"
                      RParen@12..13 ")"
                    RParen@13..14 ")""#]],
        );
    }

    #[test]
    fn parentheses_affect_precedence() {
        check(
            "5*(2+3)",
            expect![[r#"
                Root@0..7
                  InfixExpr@0..7
                    IntNumber@0..1
                      IntNumber@0..1 "5"
                    Star@1..2 "*"
                    ParenExpr@2..7
                      LParen@2..3 "("
                      InfixExpr@3..6
                        IntNumber@3..4
                          IntNumber@3..4 "2"
                        Plus@4..5 "+"
                        IntNumber@5..6
                          IntNumber@5..6 "3"
                      RParen@6..7 ")""#]],
        );
    }
}