1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
//! Controller Interface
//!
//! The Controller is responsible for running the bus.
use core::{fmt::Debug, ops::DerefMut};
use embassy_sync::{blocking_mutex::raw::RawMutex, mutex::Mutex};
use embassy_time::{with_timeout, Duration, TimeoutError};
use rand_core::RngCore;
use crate::{
frame_pool::{FrameBox, RawFrameSlice, SendFrameBox, WireFrameBox},
peer::{Peer, INCOMING_SIZE, OUTGOING_SIZE},
CmdAddr, Error, FrameSerial, MAX_TARGETS,
};
/// Time that a Controller will wait for a Target to respond
pub const REPLY_TIMEOUT: Duration = Duration::from_millis(1);
/// Controller interface and data storage
///
/// The static Controller is intended to be used in two separate places
/// in an application:
///
/// 1. In one place, where [Controller::step()] is called periodically, to
/// service bus operations
/// 2. In another place, where [Controller::recv_from()] or [Controller::send()]
/// are called, to process or forward messages to/from the bus
///
/// In a typical example where the Controller is acting as a Bridge/Router over
/// USB, place 1. would be a standalone task, calling step at some periodic polling
/// rate, and place 2. would be grouped with the USB interface for sending/receiving
/// frames over USB.
///
/// The Controller contains an async Mutex which provides interior mutable access to
/// information such as the table of connected Targets, or any "in flight" messages.
pub struct Controller<
R: RawMutex + 'static,
const IN: usize = INCOMING_SIZE,
const OUT: usize = OUTGOING_SIZE,
> {
peers: Mutex<R, [Peer<IN, OUT>; MAX_TARGETS]>,
}
/// Instantiation and Initialization methods
impl<R: RawMutex + 'static, const IN: usize, const OUT: usize> Controller<R, IN, OUT> {
const ONE: Peer<IN, OUT> = Peer::<IN, OUT>::const_new();
/// Create a new, uninitialized controller structure
///
/// Intended to be used to create as a static to avoid large
/// stack initializations.
///
/// Users must still call [`Controller::init()`] before use.
///
/// ```rust
/// use erdnuss_comms::controller::Controller;
/// use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
///
/// // NOTE: you can use any mutex suitable for you, such as `ThreadModeRawMutex`
/// // if you not using this from an interrupt context
/// static CONTROLLER: Controller<CriticalSectionRawMutex> = Controller::uninit();
/// ```
pub const fn uninit() -> Controller<R, IN, OUT> {
Self {
peers: Mutex::new([Self::ONE; MAX_TARGETS]),
}
}
/// Initialize the [Controller]
///
/// This initialization provides the backing storage for the incoming target
/// frames. [RawFrameSlice] must contain AT LEAST `IN` times `OUT`
/// frame storage slots. `sli`'s capacity will be reduced by this amount.
pub async fn init(&self, sli: &mut RawFrameSlice) {
assert!(sli.capacity() >= (INCOMING_SIZE * MAX_TARGETS));
let mut inner = self.peers.lock().await;
for m in inner.iter_mut() {
let mut split = sli.split(INCOMING_SIZE).unwrap();
core::mem::swap(sli, &mut split);
assert_eq!(split.capacity(), INCOMING_SIZE);
m.set_pool(split);
}
}
}
/// Bus management and operation method(s)
impl<R: RawMutex + 'static> Controller<R> {
/// Perform one "step" of the bus
///
/// One call to `step` will:
///
/// 1. Send UP TO one message to any known Targets, and Receive
/// UP TO one message from any known Target
/// 2. Attempt to complete any pending logical address offers
/// 3. Attempt to offer UP TO one unused logical address
///
/// This method should be called regularly.
///
/// The `serial` and `rand` resources are passed in on every call to `step`,
/// rather than making them part of the entire `Controller` entity for a couple
/// of stylistic reasons:
///
/// * Keep the static type-generics less complex
/// * Make initialization less complex
/// * Make these generics NOT required for the shared `send`/`recv_from`
/// interface methods
///
/// The inner async mutex will be locked for the entire duration of the call to
/// `step`, which may be held for some amount of time, depending on the number of
/// bus timeouts and total amount of data transferred. This may be on the order of
/// millisecond(s).
pub async fn step<T, Rand>(
&self,
serial: &mut T,
rand: &mut Rand,
) -> Result<(), Error<T::SerError>>
where
T: FrameSerial,
Rand: RngCore,
{
let mut inner = self.peers.lock().await;
serve_peers(inner.deref_mut(), serial).await?;
complete_pendings(inner.deref_mut(), serial).await?;
offer_addr(inner.deref_mut(), serial, rand).await?;
Ok(())
}
}
/// Bus I/O methods
impl<R: RawMutex + 'static> Controller<R> {
/// Attempt to enqueue a message for sending
pub async fn send(&self, mac: u64, frame: SendFrameBox) -> Result<(), SendError> {
self.peers
.lock()
.await
.iter_mut()
.find(|p| p.is_active_mac(mac))
.ok_or(SendError::NoMatchingMac)
.and_then(|p| {
p.enqueue_outgoing(frame.into_inner())
.map_err(SendError::QueueFull)
})
}
/// Attempt to receive a message from the given unique address
pub async fn recv_from(&self, mac: u64) -> Result<WireFrameBox, RecvError> {
self.peers
.lock()
.await
.iter_mut()
.find(|p| p.is_active_mac(mac))
.ok_or(RecvError::NoMatchingMac)
.and_then(|p| p.dequeue_incoming().ok_or(RecvError::NoMessage))
.map(WireFrameBox::new_unchecked)
}
/// Get a list of all target devices on the bus
///
/// This list DOES NOT include the Controller's MAC address, but the returned
/// [`heapless::Vec`] *does* reserve enough room to contain all [MAX_TARGETS]
/// plus one.
pub async fn connected(&self) -> heapless::Vec<u64, { MAX_TARGETS + 1 }> {
self.peers
.lock()
.await
.iter()
.filter_map(|p| p.is_active().then_some(p.mac()))
.collect()
}
}
/// An error when sending a frame to a Target
pub enum SendError {
/// Attempted to send to an unknown MAC address
NoMatchingMac,
/// The given MAC address was known, but the outgoing queue
/// of this device is full
QueueFull(FrameBox),
}
impl Debug for SendError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("SendError::")?;
let remain = match self {
SendError::NoMatchingMac => "NoMatchingMac",
SendError::QueueFull(_) => "QueueFull(...)",
};
f.write_str(remain)
}
}
/// An error when attempting to receive a frame from a Target
#[derive(Debug, PartialEq)]
pub enum RecvError {
/// Attempted to receive from an unknown MAC address
NoMatchingMac,
/// The given MAC address was known, but the incoming queue
/// of this device was empty
NoMessage,
}
/// A helper function that serves all currently active peers, exchanging
/// zero or one frames in each direction
async fn serve_peers<T: FrameSerial>(
inner: &mut [Peer; MAX_TARGETS],
serial: &mut T,
) -> Result<(), Error<T::SerError>> {
// First pass: poll all active devices
for (i, p) in inner.iter_mut().enumerate() {
// We only care about active devices
if !p.is_active() {
continue;
}
// Can we allocate a reception frame? If not: we can't talk to the device, skip it
// for a single round. In the future, we might want to increment error here to
// eventually time out devices, but this isn't really the fault of the target, it's
// a fault of the firmware driving the "controller".
let Some(mut rx) = p.alloc_incoming() else {
nut_warn!("Couldn't alloc incoming!");
p.increment_error();
continue;
};
// Is there any outgoing frame? If not, we use a one byte fallback buffer
// to place the "Select" command in.
let mut maybe_out = p.dequeue_outgoing();
let mut fallback = [0u8; 1];
let to_send = match maybe_out.as_deref_mut() {
Some(fb) => fb,
None => &mut fallback,
};
// Fill in the cmdaddr, send the message, and start listening with a
// timeout
to_send[0] = CmdAddr::SelectAddr(i as u8).into();
serial.send_frame(to_send).await?;
let rxto = with_timeout(REPLY_TIMEOUT, serial.recv(&mut rx));
match rxto.await {
Ok(Ok(tf)) => {
// We received a message within the timeout!
let len = tf.frame.len();
if len != 0 && tf.frame[0] == CmdAddr::ReplyFromAddr(i as u8).into() {
// We got AT least an ack, mark that as a success
p.set_success();
// If there was some kind of body, pass it on
if len > 1 {
nut_trace!("Got msg len {=usize} for {=usize}", len, i);
rx.set_len(len);
p.enqueue_incoming(rx);
}
} else {
// We got a zero len message, OR an unexpected reply. Mark an error.
nut_warn!("Error with {=usize} len is {=usize}", i, len);
p.increment_error();
}
}
Ok(Err(e)) => {
// We finished within the timeout, but got some kind of error
// while receiving. Increment the error, in case we don't just
// decide to reset or something.
p.increment_error();
// then bubble up the error.
return Err(e);
}
Err(TimeoutError) => {
// We timed out, increment error
p.increment_error();
}
}
}
Ok(())
}
/// A helper function for moving targets from the Pending stage to the Active stage
async fn complete_pendings<T: FrameSerial>(
inner: &mut [Peer; MAX_TARGETS],
serial: &mut T,
) -> Result<(), Error<T::SerError>> {
for (i, p) in inner.iter_mut().enumerate() {
// Only worry about pending nodes
let Some(mac) = p.is_pending() else {
continue;
};
// Send a message with the expected MAC address for confirmation
let mut out_buf = [0u8; 9];
out_buf[0] = CmdAddr::DiscoverySuccess(i as u8).into();
out_buf[1..9].copy_from_slice(&mac.to_le_bytes());
// We should only get back an empty ACK and nothing else
let mut in_buf = [0u8; 2];
serial.send_frame(&out_buf).await?;
let rxto = with_timeout(REPLY_TIMEOUT, serial.recv(&mut in_buf));
match rxto.await {
Ok(Ok(tf)) => {
let frame = tf.frame;
let good_len = frame.len() == 1;
let good_hdr = good_len && frame[0] == CmdAddr::ReplyFromAddr(i as u8).into();
if good_hdr {
nut_info!("Promoting to active {=usize} {=u64}", i, mac);
p.promote_to_active();
} else {
p.increment_error();
}
}
Ok(Err(_e)) => {
// We got some kind of receive error, just mark this as
// an error and move on
p.increment_error();
continue;
}
Err(TimeoutError) => {
// No answer? No address.
p.increment_error();
}
}
}
Ok(())
}
/// A helper function for moving new nodes into the Pending stage
async fn offer_addr<T: FrameSerial, R: RngCore>(
inner: &mut [Peer; MAX_TARGETS],
serial: &mut T,
rand: &mut R,
) -> Result<(), Error<T::SerError>> {
let Some((i, p)) = inner.iter_mut().enumerate().find(|(_i, p)| p.is_idle()) else {
return Ok(());
};
// We found an idle slot! Offer it up.
let mut out_buf = [0u8; 9];
out_buf[0] = CmdAddr::DiscoveryOffer(i as u8).into();
rand.fill_bytes(&mut out_buf[1..9]);
serial.send_frame(&out_buf).await?;
let mut in_buf = [0u8; 10];
let rxto = with_timeout(Duration::from_millis(1), serial.recv(&mut in_buf));
match rxto.await {
Ok(Ok(tf)) => {
let frame = tf.frame;
let good_len = frame.len() == 9;
let good_hdr = good_len && frame[0] == CmdAddr::DiscoveryClaim(i as u8).into();
if good_hdr {
let mut mac = [0u8; 8];
let rand_iter = out_buf[1..9].iter();
let resp_iter = frame[1..9].iter();
mac.iter_mut()
.zip(rand_iter.zip(resp_iter))
.for_each(|(d, (a, b))| *d = *a ^ *b);
p.promote_to_pending(u64::from_le_bytes(mac));
}
}
Ok(Err(e)) => return Err(e),
Err(_) => {
// Timed out, no one wanted the address
}
}
Ok(())
}