1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use std::fmt::{Debug, Formatter};
use std::marker::PhantomData;
use std::ops::{Deref, Index, IndexMut};

use crate::Enumerated;

/// A key-value map optimized for Enums used as keys.
///
/// Abstracts away the need to handle [Option] on insert/remove operations.
/// It is faster to initialize than `EnumTable`, because `Default` value needn't be cloned for each field.
///
/// ## Examples
///
/// Using `get` and `insert` functions.
///
/// ```
/// use enum_collections::{EnumMap, Enumerated};
/// #[derive(Enumerated)]
/// enum Letter {
///     A,
///     B,
/// }
///
/// let mut map: EnumMap<Letter, u8> = EnumMap::new();
/// map.insert(Letter::A, 42);
/// assert_eq!(Some(&42u8), map.get(Letter::A));
/// map.remove(Letter::A);
/// assert_eq!(None, map.get(Letter::A));
/// ```
///
/// Using `Index` and `IndexMut` syntactic sugar.
/// ```
/// use enum_collections::{EnumMap, Enumerated};
/// #[derive(Enumerated)]
/// enum Letter {
///     A,
///     B,
/// }
///
/// let mut map: EnumMap<Letter, u8> = EnumMap::new();
/// map[Letter::A] = Some(42);
/// assert_eq!(Some(42u8), map[Letter::A]);
/// assert_eq!(Some(&42u8), map[Letter::A].as_ref());
/// ```

pub struct EnumMap<K, V>
where
    K: Enumerated,
{
    values: Box<[Option<V>]>,
    _key_phantom_data: PhantomData<K>,
}

impl<K, V> EnumMap<K, V>
where
    K: Enumerated,
{
    /// Creates a new [EnumMap], with pre-allocated space for all keys of the enum `K`. With the underlying array righsized,
    /// no resizing is further required.
    pub fn new() -> Self {
        Self {
            values: K::VARIANTS.iter().map(|_| None).collect::<Vec<_>>().into(),
            _key_phantom_data: PhantomData {},
        }
    }

    /// Attemps to obtain a value for given `key`, returning `Some(V)` if found,
    /// or `None` if no value has been inserted for given key yet.
    ///
    /// ### Args
    /// - `key` - Instance of `K`, used to look up the corresponding value.
    #[inline]
    pub fn get(&self, key: K) -> Option<&V> {
        self.values[key.position()].as_ref()
    }

    /// Stores given `value` under the provided `key`. Overrides any existing value previously set.
    ///
    /// ### Args
    /// - `key` - The instance of `K` the value inserted can be looked up for.
    /// - `values` - Value to bind to `K`.
    #[inline]
    pub fn insert(&mut self, key: K, value: V) {
        self.values[key.position()] = Some(value);
    }

    /// Removes value stored under given key. Further `get` operations are going to return `None`.
    #[inline]
    pub fn remove(&mut self, key: K) {
        self.values[key.position()] = None;
    }
}

impl<K, V> Default for EnumMap<K, V>
where
    K: Enumerated,
{
    /// Constructs a new instance, capable of holding all values of key `K` without further resizing.
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> Index<K> for EnumMap<K, V>
where
    K: Enumerated,
    V: Default,
{
    type Output = Option<V>;

    fn index(&self, key: K) -> &Self::Output {
        &self.values[key.position()]
    }
}

impl<K, V> IndexMut<K> for EnumMap<K, V>
where
    K: Enumerated,
    V: Default,
{
    fn index_mut(&mut self, key: K) -> &mut Self::Output {
        &mut self.values[key.position()]
    }
}

impl<K, V> Debug for EnumMap<K, V>
where
    K: Enumerated + Debug,
    V: Default + Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_map()
            .entries(
                K::VARIANTS
                    .iter()
                    .enumerate()
                    .map(|(index, variant)| (variant, &self.values[index])),
            )
            .finish()
    }
}

impl<K, V> PartialEq<Self> for EnumMap<K, V>
where
    K: Enumerated,
    V: Default + PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.values.deref().eq(other.values.deref())
    }
}

impl<K, V> Eq for EnumMap<K, V>
where
    K: Enumerated,
    V: Default + Eq,
{
}

#[cfg(test)]
mod tests {
    use crate::Enumerated;

    use super::EnumMap;

    /// No Debug derived on purpose, the crate must be usable without [std::fmt::Debug] derived
    /// for the enum.
    #[derive(Enumerated)]
    pub(super) enum Letter {
        A,
        B,
    }

    #[test]
    fn get_insert_index_trait() {
        let mut enum_map = EnumMap::<Letter, i32>::new();
        enum_map[Letter::A] = Some(42);
        assert_eq!(Some(42), enum_map[Letter::A]);
        assert_eq!(Some(&42), enum_map[Letter::A].as_ref());
        assert_eq!(None, enum_map[Letter::B]);
    }

    #[test]
    fn new_all_none() {
        let enum_map = EnumMap::<Letter, i32>::new();
        for index in 0..Letter::VARIANTS.len() {
            assert_eq!(None, enum_map.values[index]);
        }
    }

    #[test]
    fn inserts() {
        let mut enum_map = EnumMap::<Letter, i32>::new();
        enum_map.insert(Letter::A, 42);
        assert_eq!(Some(&42), enum_map.get(Letter::A));
        assert_eq!(None, enum_map.get(Letter::B));
    }

    /// A dedicated enum with [std::fmt::Debug] derived, to test compilation and usability both
    /// with and without `Debug` implemented.
    #[derive(Enumerated, Debug)]
    pub(super) enum LetterDebugDerived {
        A,
        B,
    }

    #[test]
    fn debug() {
        let mut enum_map = EnumMap::<LetterDebugDerived, i32>::new();
        enum_map.insert(LetterDebugDerived::A, 42);
        let debug_output = format!("{enum_map:?}");
        let expected_output = "{A: Some(42), B: None}";
        assert_eq!(expected_output, debug_output);
    }

    #[test]
    fn eq() {
        let mut first_map = EnumMap::<LetterDebugDerived, i32>::new();
        first_map.insert(LetterDebugDerived::A, 42);
        let mut second_map = EnumMap::<LetterDebugDerived, i32>::new();
        second_map.insert(LetterDebugDerived::A, 42);
        assert_eq!(first_map, second_map);
        second_map.insert(LetterDebugDerived::B, 0);
        debug_assert_ne!(first_map, second_map);
    }
}