engineering_repr/string.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
//! String conversions
use std::{
cmp::{min, Ordering},
fmt::Display,
str::FromStr,
};
use crate::{EQSupported, EngineeringQuantity, Error};
static POSITIVE_MULTIPLIERS: &str = " kMGTPEZYRQ";
static NEGATIVE_MULTIPLIERS: &str = " munpfazyrq"; // μ is not ASCII, which confounds things a little
fn exponent_to_multiplier(exp: i8) -> &'static str {
let abs = exp.unsigned_abs() as usize;
match (exp.cmp(&0), abs) {
(Ordering::Equal, _) => "",
(Ordering::Greater, _) => &POSITIVE_MULTIPLIERS[abs..=abs],
(Ordering::Less, 2) => "μ", // special case as non-ASCII
(Ordering::Less, _) => &NEGATIVE_MULTIPLIERS[abs..=abs],
}
}
const fn multiplier_to_exponent(prefix: char) -> Option<i8> {
Some(match prefix {
//' ' => 0,
'k' => 1,
'M' => 2,
'G' => 3,
'T' => 4,
'P' => 5,
'E' => 6,
'Z' => 7,
'Y' => 8,
'R' => 9,
'Q' => 10,
'm' => -1,
'μ' | 'u' => -2,
'n' => -3,
'p' => -4,
'f' => -5,
'a' => -6,
'z' => -7,
'y' => -8,
'r' => -9,
'q' => -10,
_ => return None,
})
}
fn find_multiplier(s: &str) -> Option<(usize /* index */, i8 /* exponent */)> {
for (i, c) in s.chars().enumerate() {
if let Some(p) = multiplier_to_exponent(c) {
return Some((i, p));
}
}
None
}
/////////////////////////////////////////////////////////////////////////
// STRING TO NUMBER
impl<T: EQSupported<T> + FromStr> FromStr for EngineeringQuantity<T> {
type Err = Error;
/// # Example
/// ```
/// use engineering_repr::EngineeringQuantity as EQ;
/// use std::str::FromStr as _;
/// let eq = EQ::<i64>::from_str("1.5k").unwrap();
/// assert_eq!(i64::try_from(eq).unwrap(), 1500);
/// // RKM style strings
/// let eq2 = EQ::<i64>::from_str("1k5").unwrap();
/// assert_eq!(eq, eq2);
/// ```
fn from_str(s: &str) -> Result<Self, Self::Err> {
let prefix = find_multiplier(s);
// Is there a decimal? If so it's standard (non RKM) mode.
let decimal = s.find('.');
let (prefix_index, exponent) = match (prefix, decimal) {
// Easy case: direct integer conversion
(None, None) => {
return T::from_str(s)
.map_err(|_| Error::ParseError)
.and_then(|i| EngineeringQuantity::from_raw(i, 0));
}
// 1.23 (no multiplier suffix)
(None, Some(idx)) => (idx, 0),
// General case
(Some((id, exp)), _) => (id, exp),
};
let split_index = if let Some(d) = decimal {
// Non-RKM mode (1.5k)
d
} else {
// RKM mode (1k5)
prefix_index
};
let mut to_convert = s.chars().take(split_index).collect::<String>();
let mut trailing = s.chars().skip(split_index + 1).collect::<String>();
// In non-RKM mode, don't convert the prefix (err, the suffix)
if decimal.is_some() && prefix.is_some() {
let _ = trailing.pop();
}
// Each 3 digits (or part thereof) represents another exponent.
to_convert.push_str(&trailing);
// If it's not a round multiple of 3, we need to pad !
#[allow(clippy::cast_possible_truncation, clippy::cast_possible_wrap)]
let whole_groups = (trailing.len() / 3) as i8;
// convert to signed so we can trap a panic
#[allow(clippy::cast_possible_wrap)]
let mut exponent = exponent;
match trailing.len() % 3 {
0 => exponent -= whole_groups,
n => {
// n must be 1 or 2
exponent -= whole_groups + 1;
to_convert.push_str("0".repeat(3 - n).as_str());
}
}
let significand = T::from_str(&to_convert).map_err(|_| Error::ParseError)?;
#[allow(
clippy::cast_possible_truncation,
clippy::cast_possible_wrap,
clippy::cast_sign_loss
)]
Self::from_raw(significand, exponent)
}
}
/////////////////////////////////////////////////////////////////////////
// NUMBER TO STRING
impl<T: EQSupported<T>> Display for EngineeringQuantity<T> {
/// Default behaviour is to output to 3 significant figures, skip unnecessary trailing zeros,
/// standard (not RKM) mode.
/// See [`EngineeringQuantity::default()`].
/// # Examples
/// ```
/// use engineering_repr::EngineeringQuantity as EQ;
/// let ee1 = EQ::<i32>::from(1200);
/// assert_eq!(ee1.to_string(), "1.2k");
/// let ee2 = EQ::<i32>::from(123456);
/// assert_eq!(ee2.to_string(), "123k");
/// ```
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
DisplayAdapter {
value: *self,
..Default::default()
}
.fmt(f)
}
}
/// A wrapper type which allows you to specify the desired output format.
/// It implements [`Display`].
///
/// This type may be conveniently created by [`EngineeringQuantity::with_precision()`]
/// and [`EngineeringQuantity::rkm_with_precision()`].
#[derive(Copy, Clone, Debug)]
pub struct DisplayAdapter<T: EQSupported<T>>
where
T: ToString,
{
/// The value to be displayed
pub value: EngineeringQuantity<T>,
/// The precision at which to display, or 0 to work it out losslessly
pub max_significant_figures: usize,
/// Specifies [RKM code](https://en.wikipedia.org/wiki/RKM_code) mode
pub rkm: bool,
/// Always emit the precision requested, even any unnecessary untrailing zeroes after the decimal point.
pub strict: bool,
}
impl<T: EQSupported<T>> Default for DisplayAdapter<T> {
fn default() -> Self {
Self {
value: EngineeringQuantity {
significand: T::ZERO,
exponent: 0,
},
max_significant_figures: 3,
rkm: false,
strict: false,
}
}
}
impl<T: EQSupported<T>> PartialEq<DisplayAdapter<T>> for &str {
/// This is intended for use in tests.
#[allow(clippy::cmp_owned)]
fn eq(&self, other: &DisplayAdapter<T>) -> bool {
*self == other.to_string()
}
}
impl<T: EQSupported<T>> EngineeringQuantity<T> {
/// Creates a standard [`DisplayAdapter`] for this object, with the given precision.
/// ```
/// use engineering_repr::EngineeringQuantity as EQ;
/// let ee = EQ::<i32>::from(1234567);
/// assert_eq!(ee.with_precision(2).to_string(), "1.2M");
/// ```
#[must_use]
pub fn with_precision(&self, max_significant_figures: usize) -> DisplayAdapter<T> {
DisplayAdapter {
value: *self,
max_significant_figures,
rkm: false,
strict: false,
}
}
/// Creates an RKM [`DisplayAdapter`] for this object in RKM mode, with the given precision.
/// ```
/// use engineering_repr::EngineeringQuantity as EQ;
/// let ee = EQ::<i32>::from(1234567);
/// assert_eq!(ee.rkm_with_precision(2).to_string(), "1M2");
/// ```
#[must_use]
pub fn rkm_with_precision(&self, max_significant_figures: usize) -> DisplayAdapter<T> {
DisplayAdapter {
value: *self,
max_significant_figures,
rkm: true,
strict: false,
}
}
/// Creates a [`DisplayAdapter`] for this object, with strict precision.
/// The requested digits will always be output, even trailing zeroes.
/// ```
/// use engineering_repr::EngineeringQuantity as EQ;
/// let ee = EQ::<i32>::from(1_200);
/// assert_eq!(ee.with_strict_precision(3).to_string(), "1.20k");
/// ```
#[must_use]
pub fn with_strict_precision(&self, max_significant_figures: usize) -> DisplayAdapter<T> {
DisplayAdapter {
value: *self,
max_significant_figures,
rkm: false,
strict: true,
}
}
}
impl<T: EQSupported<T>> Display for DisplayAdapter<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
/*
* We prepare the output string in five parts:
* - Prefix := "-" (negative) or "" (positive)
* - Leaders := Digits before output decimal point
* - Point := Output decimal point. This is "." (normal mode), or multiplier (rkm mode), or "" (normal mode and there are no trailers)
* - Trailers := Digits after output decimal point
* - Suffix := multiplier (normal mode) or "" (rkm mode)
*
* Algorithm:
* 1. Convert significand to digits
* 2. Compute the output exponent such that the quantity to the left of the output decimal point is from 1 to 999
* (Positive exponents) Append zeroes in groups of 3 until we reach the true decimal point
* (Negative exponents) Append nothing
* 3. Split into leading/trailing (this is a function of the exponent)
* 4. Implement precision:
* If precision is arbitrary, trim all trailing zeroes.
* Otherwise, trim trailing digits as necessary to meet the request.
*/
let detail = self.value.significand.abs_and_sign();
let mut digits = detail.abs.to_string();
// at first glance the output might reasonably be this value of `digits`, followed by `exponent` times "000"...
// but we need to (re)compute the correct exponent for display.
let prefix = if detail.negative { "-" } else { "" };
#[allow(clippy::cast_possible_truncation)]
let output_exponent = if self.value.exponent > 0 {
// Append zeroes until we reach the decimal point (we may trim some later)
digits.reserve((3 * self.value.exponent + 1).unsigned_abs() as usize);
for _ in 0..self.value.exponent {
digits.push_str("000");
}
((digits.len() - 1) / 3) as i8
} else {
// Negative or zero exponent: Append nothing, but we need a different formula for the output exponent
self.value.exponent + ((digits.len() - 1) / 3) as i8
};
let si = exponent_to_multiplier(output_exponent);
let n_leading = if output_exponent > 0 {
digits.len() - output_exponent.unsigned_abs() as usize * 3
} else {
match digits.len() % 3 {
0 => 3,
i => i,
}
};
let precision = match self.max_significant_figures {
0 => usize::MAX, // automatic mode: take the digits we've got from a full conversion, we'll trim trailing 0s in a moment
i => i,
};
if self.strict {
let pad = self.max_significant_figures.saturating_sub(digits.len());
for _ in 0..pad {
digits.push('0');
}
}
let n_trailing = min(
// number of digits remaining
digits.len() - n_leading,
// number of digits we'd take to reach the requested precision
precision - min(precision, n_leading),
);
let leaders = &digits[0..n_leading];
let mut trailers = &digits[n_leading..n_leading + min(n_trailing, precision)];
if !self.strict {
while trailers.ends_with('0') {
trailers = &trailers[0..trailers.len() - 1];
}
}
// Point and suffix strings resolve to a 3-boolean truth table...
let (point, suffix) = match (output_exponent == 0, self.rkm, trailers.is_empty()) {
// Output exponent is 0: mode is irrelevant, no suffix, suppress point if there are no digits after it
(true, _, true) => ("", ""),
(true, _, false) => (".", ""),
// Exponent non zero, RKM mode: point is always SI, no suffix
(false, true, _) => (si, ""),
// Exponent non zero, Standard mode:
(false, false, true) => ("", si), // No trailer, suppress point
(false, false, false) => (".", si), // With trailer, output point
};
write!(f, "{prefix}{leaders}{point}{trailers}{suffix}")
}
}
/////////////////////////////////////////////////////////////////////////
// CONVENIENCE TRAITS
/// A convenience trait for outputting integers directly in engineering notation.
///
/// [`DisplayAdapter`] implements [`Display`], so you can use the returned adapter
/// directly in a formatting macro.
pub trait EngineeringRepr<T: EQSupported<T>> {
/// Outputs a number in engineering notation
///
/// A request for 0 significant figures outputs exactly as many digits are necessary to maintain precision.
/// ```
/// use engineering_repr::EngineeringRepr as _;
/// assert_eq!("123k", 123456.to_eng(3));
/// assert_eq!("123.4k", 123456.to_eng(4));
/// assert_eq!("123.456k", 123456.to_eng(0));
/// ```
/// # Panics
/// If the value could not be rendered
fn to_eng(self, sig_figures: usize) -> DisplayAdapter<T>;
/// Outputs a number in RKM notation
///
/// A request for 0 significant figures outputs exactly as many digits are necessary to maintain precision.
/// ```
/// use engineering_repr::EngineeringRepr as _;
/// assert_eq!("123k", 123456.to_rkm(3));
/// assert_eq!("123k4", 123456.to_rkm(4));
/// assert_eq!("123k456", 123456.to_rkm(0));
/// ```
/// # Panics
/// If the value could not be rendered
fn to_rkm(self, sig_figures: usize) -> DisplayAdapter<T>;
}
macro_rules! impl_to_eng {
{$($t:ty),+} => {$(
impl<> EngineeringRepr<$t> for $t {
fn to_eng(self, sig_figures: usize) -> DisplayAdapter<$t>
{
EngineeringQuantity::<$t>::try_from(self).unwrap().with_precision(sig_figures)
}
fn to_rkm(self, sig_figures: usize) -> DisplayAdapter<$t>
{
EngineeringQuantity::<$t>::try_from(self).unwrap().rkm_with_precision(sig_figures)
}
}
)+}
}
impl_to_eng!(u16, u32, u64, u128, usize, i16, i32, i64, i128, isize);
/////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod test {
use super::EngineeringQuantity as EQ;
use std::str::FromStr as _;
#[test]
fn from_string() {
for (i, s) in &[
(1i128, "1"),
(42, "42"),
(999, "999"),
(1000, "1k"),
(1500, "1.5k"),
(2345, "2.345k"),
(9999, "9.999k"),
(12_345, "12.345k"),
(13_000, "13k"),
(13_000, "13.k"),
(13_000, "13.0k"),
(999_999, "999.999k"),
(1_000_000, "1.00M"),
(2_345_678, "2.345678M"),
(999_999_999, "999.999999M"),
(12_345_000_000_000_000_000_000_000_000, "12.345R"),
(12_345_000_000_000_000_000_000_000_000_000, "12.345Q"),
(1000, "1k0"),
(1500, "1k5"),
(2345, "2k345"),
(9999, "9k999"),
(12_345, "12k345"),
(13_000, "13k0"),
(999_999, "999k999"),
(1_000_000, "1M0"),
(2_345_678, "2M345678"),
(999_999_999, "999M999999"),
(1_000_000_000, "1G0"),
(1_000_000_000_000, "1T0"),
(1_000_000_000_000_000, "1P0"),
(1_000_000_000_000_000_000, "1E0"),
(1_000_000_000_000_000_000_000, "1Z0"),
(1_000_000_000_000_000_000_000_000, "1Y0"),
(12_345_000_000_000_000_000_000_000_000, "12R345"), // I wonder if 1R means 1 ohm or 1 ronnaohm? :-)
(12_345_000_000_000_000_000_000_000_000_000, "12Q345"),
] {
let eq = EQ::<i128>::from_str(s).unwrap();
let result = i128::from(eq);
assert_eq!(result, *i, "input {s} expected {i}");
let mut str2 = String::with_capacity(1 + s.len());
str2.push('-');
str2.push_str(s);
let ee2 = EQ::<i128>::from_str(&str2).unwrap();
assert_eq!(i128::from(ee2), -*i);
}
}
#[test]
fn parse_failures() {
for s in &["foo", "1.2.3k", "--1"] {
let _ = EQ::<i128>::from_str(s).expect_err(&format!("this should have failed: {s}"));
}
}
#[test]
fn to_string() {
for (i, s) in &[
(1i128, "1"),
(42, "42"),
(999, "999"),
(1000, "1k"),
(1500, "1.5k"),
(2345, "2.34k"),
(9999, "9.99k"),
(12_345, "12.3k"),
(13_000, "13k"),
(999_999, "999k"),
(1_000_000, "1M"),
(2_345_678, "2.34M"),
(999_999_999, "999M"),
(12_345_000_000_000_000_000_000_000_000, "12.3R"),
(12_345_000_000_000_000_000_000_000_000_000, "12.3Q"),
] {
let ee = EQ::<i128>::from(*i);
assert_eq!(ee.to_string(), *s);
let ee2 = EQ::<i128>::from(-*i);
let ss2 = ee2.to_string();
assert_eq!(ss2.chars().next().unwrap(), '-');
assert_eq!(&ss2[1..], *s);
}
}
#[test]
fn to_string_small() {
for (i, e, s) in &[
(1, -1, "1m"),
(999, -1, "999m"),
(1, -2, "1μ"),
(1001, -2, "1m"),
(1001, -1, "1"),
(1_000_001, -2, "1"),
(1_111, -1, "1.11"),
(1010, -3, "1.01μ"),
(1010, -4, "1.01n"),
(1010, -5, "1.01p"),
(1010, -6, "1.01f"),
(1010, -7, "1.01a"),
(1010, -8, "1.01z"),
(1010, -9, "1.01y"),
(1010, -10, "1.01r"),
(1010, -11, "1.01q"),
] {
let ee = EQ::<i128>::from_raw(*i, *e).unwrap();
assert_eq!(ee.to_string(), *s, "inputs {i}, {e}");
let ee2 = EQ::<i128>::from_raw(-*i, *e).unwrap();
let mut expected = (*s).to_string();
expected.insert(0, '-');
assert_eq!(ee2.to_string(), expected, "inputs -{i}, {e}");
}
for (i, e, s) in &[
(1, -1, "1m"),
(999, -1, "999m"),
(1, -2, "1μ"),
(1001, -2, "1m001"),
(1001, -1, "1.001"),
(1_000_001, -2, "1"),
] {
let ee = EQ::<i128>::from_raw(*i, *e).unwrap();
assert_eq!(ee.rkm_with_precision(4).to_string(), *s, "inputs {i}, {e}");
}
}
#[test]
fn from_string_small() {
for (i, e, s) in &[
(1, -1, "1m"),
(999, -1, "999m"),
(1, -2, "1μ"),
(1001, -2, "1.001m"),
(1001, -1, "1.001"),
(1, 0, "1"),
(1_000_001, -2, "1.000001"),
(1_111, -1, "1.111"),
(1010, -3, "1.01μ"),
(1010, -4, "1.01n"),
(1010, -5, "1.01p"),
(1010, -6, "1.01f"),
(1010, -7, "1.01a"),
(1010, -8, "1.01z"),
(1010, -9, "1.01y"),
(1010, -10, "1.01r"),
(1010, -11, "1.01q"),
] {
let ee3 = EQ::<i128>::from_str(s).unwrap();
let expected_raw = (*i, *e);
assert_eq!(ee3.to_raw(), expected_raw);
}
for (i, e, s) in &[
(1, -1, "1m"),
(999, -1, "999m"),
(1, -2, "1μ"),
(1001, -2, "1m001"),
(1001, -1, "1.001"),
(1_000_001, -2, "1.000001"),
] {
let ee2 = EQ::<i64>::from_str(s).unwrap();
let expected_raw = (*i, *e);
assert_eq!(ee2.to_raw(), expected_raw);
}
}
#[test]
fn to_string_rkm() {
for (i, s) in &[
(1i128, "1"),
(42, "42"),
(999, "999"),
(1000, "1k"),
(1500, "1k5"),
(2345, "2k3"),
(9999, "9k9"),
(12_345, "12k"),
(13_000, "13k"),
(999_999, "999k"),
(1_000_000, "1M"),
(2_345_678, "2M3"),
(999_999_999, "999M"),
(12_345_000_000_000_000_000_000_000_000, "12R"),
(12_345_000_000_000_000_000_000_000_000_000, "12Q"),
] {
let ee = EQ::<i128>::from(*i);
assert_eq!(ee.rkm_with_precision(2).to_string(), *s);
let ee2 = EQ::<i128>::from(-*i);
let ss2 = ee2.rkm_with_precision(2).to_string();
assert_eq!(ss2.chars().next().unwrap(), '-');
assert_eq!(&ss2[1..], *s);
}
}
#[test]
fn traits() {
use super::EngineeringRepr as _;
assert_eq!("123k", 123_456.to_eng(3));
assert_eq!("123.4k", 123_456.to_eng(4));
assert_eq!("123k4", 123_456.to_rkm(4));
}
#[test]
fn raw_to_string() {
for (sig, exp, str) in &[
(1, 0i8, "1"),
(1, 1, "1k"),
(1000, 0, "1k"),
(1000, 1, "1M"),
] {
let e = EQ::<i128>::from_raw(*sig, *exp).unwrap();
assert_eq!(e.to_string(), *str, "test case: {sig},{exp} -> {str}");
}
}
#[test]
fn overflow() {
let e = EQ::from_raw(1u16, 0).unwrap();
let e2 = EQ::from_raw(1u16, 1).unwrap();
assert_ne!(e, e2);
println!("{e:?} -> {e}");
println!("{e2:?} -> {e2}");
let _ = e.to_string();
}
#[test]
fn auto_precision() {
for (i, s) in &[
(1i128, "1"),
(42, "42"),
(100, "100"),
(999, "999"),
(1000, "1k"),
(1500, "1.5k"),
(2345, "2.345k"),
(9999, "9.999k"),
(12_345, "12.345k"),
(13_000, "13k"),
(999_999, "999.999k"),
(1_000_000, "1M"),
(2_345_678, "2.345678M"),
(999_999_999, "999.999999M"),
(12_345_600_000_000_000_000_000_000_000, "12.3456R"),
(12_345_600_000_000_000_000_000_000_000_000, "12.3456Q"),
] {
let ee = EQ::<i128>::from(*i);
assert_eq!(ee.with_precision(0).to_string(), *s, "input={}", *i);
let ee2 = EQ::<i128>::from(-*i);
let ss2 = ee2.with_precision(0).to_string();
assert_eq!(ss2.chars().next().unwrap(), '-');
assert_eq!(&ss2[1..], *s, "input={}", -*i);
}
}
#[test]
fn strict_precision() {
let ee = EQ::<i64>::from_raw(1234, -3).unwrap();
assert_eq!(ee.with_strict_precision(6).to_string(), "1.23400μ");
}
}