engineering_repr/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// (c) 2024 Ross Younger

#![doc = include_str!("../README.md")]
//!
//! # Feature flags
#![cfg_attr(
    feature = "document-features",
    cfg_attr(doc, doc = ::document_features::document_features!())
)]

use std::cmp::Ordering;

use num_traits::{checked_pow, ConstZero, PrimInt};

mod string;
pub use string::{DisplayAdapter, EngineeringRepr};

#[cfg(feature = "serde")]
mod serde_support;

/// Helper type for expressing numbers in engineering notation
///
/// # Type parameter
/// The type parameter `T` is the underlying storage type used for the significand of the number.
/// That is to say, an `EngineeringQuantity<u32>` uses a `u32` to store the numeric part.
#[derive(Debug, Clone, Copy, Default)]
pub struct EngineeringQuantity<T: EQSupported<T>> {
    /// Significant bits
    significand: T,
    /// Engineering exponent i.e. powers of 1e3
    exponent: i8,
}

/////////////////////////////////////////////////////////////////////////
// META (SUPPORTED STORAGE TYPES)

/// Marker trait indicating that a type is supported as a storage type for [`EngineeringQuantity`].
pub trait EQSupported<T: PrimInt>: PrimInt + std::fmt::Display + ConstZero + SignHelper<T> {
    /// Always 1000 (used internally)
    const EXPONENT_BASE: T;
}

macro_rules! supported_types {
    {$($t:ty),+} => {$(
        impl<> EQSupported<$t> for $t {
            const EXPONENT_BASE: $t = 1000;
        }
    )+}
}

supported_types!(i16, i32, i64, i128, isize, u16, u32, u64, u128, usize);

/// Signedness helper data, used by string conversions
#[derive(Debug, Clone)]
pub struct AbsAndSign<T: PrimInt> {
    abs: T,
    negative: bool,
}

/// Signedness helper trait, used by string conversions.
/// This trait exists because `abs()` is, quite reasonably, only implemented
/// for types which are `num_traits::Signed`.
pub trait SignHelper<T: PrimInt> {
    /// Unpacks a maybe-signed integer into its absolute value and sign bit
    fn abs_and_sign(&self) -> AbsAndSign<T>;
}

macro_rules! impl_unsigned_helpers {
    {$($t:ty),+} => {$(
        impl<> SignHelper<$t> for $t {
            fn abs_and_sign(&self) -> AbsAndSign<$t> {
                AbsAndSign { abs: *self, negative: false }
            }
        }
    )+}
}

macro_rules! impl_signed_helpers {
    {$($t:ty),+} => {$(
        impl<> SignHelper<$t> for $t {
            fn abs_and_sign(&self) -> AbsAndSign<$t> {
                AbsAndSign { abs: self.abs(), negative: self.is_negative() }
            }
        }
    )+}
}

impl_unsigned_helpers!(u16, u32, u64, u128, usize);
impl_signed_helpers!(i16, i32, i64, i128, isize);

/////////////////////////////////////////////////////////////////////////
// BASICS

// Constructors & accessors
impl<T: EQSupported<T>> EngineeringQuantity<T> {
    /// Raw constructor from component parts
    #[must_use]
    pub fn from_raw(significand: T, exponent: i8) -> Self {
        Self {
            significand,
            exponent,
        }
    }
    /// Raw accessor to retrieve the component parts
    #[must_use]
    pub fn to_raw(self) -> (T, i8) {
        (self.significand, self.exponent)
    }
}

// Comparisons

impl<T: EQSupported<T> + TryFrom<EngineeringQuantity<T>>> PartialEq for EngineeringQuantity<T> {
    /// ```
    /// use engineering_repr::EngineeringQuantity as EQ;
    /// let q1 = EQ::from_raw(42u32,0);
    /// let q2 = EQ::from_raw(42u32,0);
    /// assert_eq!(q1, q2);
    /// let q3 = EQ::from_raw(42,1);
    /// let q4 = EQ::from_raw(42000,0);
    /// assert_eq!(q3, q4);
    /// ```
    fn eq(&self, other: &Self) -> bool {
        // Easy case first
        if self.exponent == other.exponent {
            return self.significand == other.significand;
        }
        let cmp = self.partial_cmp(other);
        matches!(cmp, Some(Ordering::Equal))
    }
}

impl<T: EQSupported<T> + TryFrom<EngineeringQuantity<T>>> PartialOrd for EngineeringQuantity<T> {
    /// ```
    /// use engineering_repr::EngineeringQuantity as EQ;
    /// use more_asserts::assert_lt;
    /// let q2 = EQ::from_raw(41999,0);
    /// let q3 = EQ::from_raw(42,1);
    /// let q4 = EQ::from_raw(42001,0);
    /// assert_lt!(q2, q3);
    /// assert_lt!(q3, q4);
    /// ```
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        let v1 = T::try_from(*self);
        let v2 = T::try_from(*other);
        match (v1, v2) {
            (Ok(vv1), Ok(vv2)) => Some(vv1.cmp(&vv2)),
            _ => None,
        }
    }
}

// Type conversions
impl<T: EQSupported<T>> EngineeringQuantity<T> {
    /// Conversion to a different storage type.
    /// If you can convert from type A to type B,
    /// then you can convert from `EngineeringQuantity<A>` to `EngineeringQuantity<B>`.
    /// ```
    /// use engineering_repr::EngineeringQuantity as EQ;
    /// let q = EQ::from_raw(42u32, 0);
    /// let q2 = q.convert::<u64>();
    /// assert_eq!(q2.to_raw(), (42u64, 0));
    /// ```
    pub fn convert<U: EQSupported<U> + From<T>>(&self) -> EngineeringQuantity<U> {
        let (sig, exp) = self.to_raw();
        EngineeringQuantity::<U>::from_raw(sig.into(), exp)
    }

    /// Fallible conversion to a different storage type.
    ///
    /// Note that conversion only fails if the significand doesn't fit into the destination storage type,
    /// without reference to the exponent. This means that two numbers, which might be equal, may not both
    /// be convertible to the same destination type if they are not normalised. For example:
    /// ```
    /// use engineering_repr::EngineeringQuantity as EQ;
    /// let million1 = EQ::from_raw(1, 2); // 1e6
    /// let million2 = EQ::from_raw(1_000_000, 0);
    /// assert_eq!(million1, million2);
    /// let r1 = million1.try_convert::<u16>().unwrap(); // OK, because stored as (1,2)
    /// let r2 = million2.try_convert::<u16>().expect_err("overflow"); // Overflow, because 1_000_000 won't fit into a u16
    /// ```
    pub fn try_convert<U: EQSupported<U> + TryFrom<T>>(
        &self,
    ) -> Result<EngineeringQuantity<U>, <U as std::convert::TryFrom<T>>::Error> {
        let (sig, exp) = self.to_raw();
        Ok(EngineeringQuantity::<U>::from_raw(sig.try_into()?, exp))
    }
}

impl<T: EQSupported<T>> EngineeringQuantity<T> {
    /// Scales the number to remove any unnecessary groups of trailing zeroes.
    #[must_use]
    pub fn normalise(self) -> Self {
        let mut working = self;
        loop {
            let (div, rem) = (
                working.significand / T::EXPONENT_BASE,
                working.significand % T::EXPONENT_BASE,
            );
            if rem != T::ZERO {
                break;
            }
            working.significand = div;
            working.exponent += 1;
        }
        working
    }
}

/////////////////////////////////////////////////////////////////////////
// CONVERSION FROM INTEGER

impl<T: EQSupported<T>, U: EQSupported<U>> From<T> for EngineeringQuantity<U>
where
    U: From<T>,
{
    /// Integers can always be promoted on conversion to [`EngineeringQuantity`].
    /// (For demotions, you have to convert the primitive yourself and handle any failures.)
    /// ```
    /// let i = 42u32;
    /// let _e = engineering_repr::EngineeringQuantity::<u64>::from(i);
    /// ```
    fn from(value: T) -> Self {
        Self {
            significand: value.into(),
            exponent: 0,
        }
    }
}

/////////////////////////////////////////////////////////////////////////
// CONVERSION TO INTEGER

macro_rules! impl_try_from {
    {$($t:ty),+} => {$(
        impl<U: EQSupported<U>> TryFrom<EngineeringQuantity<U>> for $t
        where $t: TryFrom<U>,
        {
            type Error = crate::Error;
            #[doc = concat!("\
Conversion to integer is always fallible, as the exponent might cause us to under or overflow.
```
use engineering_repr::EngineeringQuantity;
use engineering_repr::Error as EErr;
let i = EngineeringQuantity::<u32>::from_raw(11, 1);
assert_eq!(", stringify!($t), "::try_from(i).unwrap(), 11000);
```
")]
            fn try_from(eq: EngineeringQuantity<U>) -> Result<Self, Error> {
                // TODO: This conversion fails on negative exponents
                let exp: usize = eq.exponent.try_into().map_err(|_| Error::Underflow)?;
                let Some(factor) = checked_pow(U::EXPONENT_BASE, exp) else {
                    return Err(Error::Overflow);
                };
                let result: U = factor * eq.significand;
                std::convert::TryInto::<$t>::try_into(result).map_err(|_| Error::Overflow)
            }
        }

    )+}
}

impl_try_from!(u16, u32, u64, u128, usize, i16, i32, i64, i128, isize);

/////////////////////////////////////////////////////////////////////////
// ERRORS

/// Local error type returned by failing conversions
#[derive(Clone, Copy, Debug, PartialEq, thiserror::Error)]
#[allow(missing_docs)]
pub enum Error {
    #[error("Numeric overflow")]
    Overflow,
    #[error("Numeric underflow")]
    Underflow,
    #[error("The string could not be parsed")]
    ParseError,
}

/////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod test {
    use super::EngineeringQuantity as EQ;
    use super::Error as EQErr;

    #[test]
    fn integers() {
        for i in &[1i64, -1, 100, -100, 1000, 4000, -4000, 4_000_000] {
            let ee = EQ::from_raw(*i, 0);
            assert_eq!(i64::try_from(ee).unwrap(), *i);
            let ee2 = EQ::from_raw(*i, 1);
            assert_eq!(i64::try_from(ee2).unwrap(), *i * 1000, "input is {}", *i);
        }
    }

    #[test]
    fn equality() {
        for (a, b, c, d) in &[
            (1i64, 0, 1i64, 0),
            (1, 1, 1000, 0),
            (2000, 0, 2, 1),
            (123_000_000, 0, 123_000, 1),
            (123_000_000, 0, 123, 2),
            (456_000_000_000_000, 0, 456_000, 3),
            (456_000_000_000_000, 0, 456, 4),
        ] {
            let e1 = EQ::from_raw(*a, *b);
            let e2 = EQ::from_raw(*c, *d);
            assert_eq!(e1, e2);
        }
    }

    #[test]
    fn conversion() {
        let t = EQ::<u32>::from_raw(12345, 0);
        let u = t.convert::<u64>();
        assert_eq!(u.to_raw().0, <u32 as Into<u64>>::into(t.to_raw().0));
        assert_eq!(t.to_raw().1, u.to_raw().1);
    }

    #[test]
    fn overflow() {
        let t = EQ::<u32>::from_raw(100_000, 0);
        let _ = t.try_convert::<u16>().expect_err("TryFromIntError");
        assert_eq!(u16::try_from(t), Err(EQErr::Overflow));

        // 10^15 is too big for a u32, so will overflow on conversion to integer:
        let t = EQ::<u32>::from_raw(1, 5);
        assert_eq!(u64::try_from(t), Err(EQErr::Overflow));
    }
    #[test]
    fn underflow() {
        let t = EQ::<u32>::from_raw(1, -1);
        assert_eq!(u32::try_from(t), Err(EQErr::Underflow));
    }

    #[test]
    fn normalise() {
        let q = EQ::from_raw(1_000_000, 0);
        let q2 = q.normalise();
        assert_eq!(q, q2);
        assert_eq!(q2.to_raw(), (1, 2));
    }
}