1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// EndBASIC
// Copyright 2020 Julio Merino
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License.  You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See the
// License for the specific language governing permissions and limitations
// under the License.

//! Execution engine for EndBASIC programs.

use crate::ast::{ArgSep, Expr, Statement, Value, VarRef, VarType};
use crate::eval::{self, BuiltinFunction, CallableMetadata, CallableMetadataBuilder, Vars};
use crate::parser::{self, Parser};
use async_trait::async_trait;
use std::collections::HashMap;
use std::future::Future;
use std::io;
use std::pin::Pin;
use std::rc::Rc;

/// Execution errors.
#[derive(Debug, thiserror::Error)]
pub enum Error {
    /// Evaluation error during execution.
    #[error("{0}")]
    EvalError(#[from] eval::Error),

    /// I/O error during execution.
    #[error("{0}")]
    IoError(#[from] io::Error),

    /// Parsing error during execution.
    #[error("{0}")]
    ParseError(#[from] parser::Error),

    /// Syntax error.
    #[error("{0}")]
    SyntaxError(String),

    /// Execution of a builtin command failed due to a user call error.
    #[error("{0}")]
    UsageError(String),
}

/// Result for execution return values.
pub type Result<T> = std::result::Result<T, Error>;

/// Instantiates a new `Err(Error::SyntaxError(...))` from a message.  Syntactic sugar.
fn new_syntax_error<T, S: Into<String>>(message: S) -> Result<T> {
    Err(Error::SyntaxError(message.into()))
}

/// Instantiates a new `Err(Error::UsageError(...))` from a message.  Syntactic sugar.
pub fn new_usage_error<T, S: Into<String>>(message: S) -> Result<T> {
    Err(Error::UsageError(message.into()))
}

/// A trait to define a command that is executed by a `Machine`.
///
/// The commands themselves are immutable but they can reference mutable state.  Given that
/// EndBASIC is not threaded, it is sufficient for those references to be behind a `RefCell`
/// and/or an `Rc`.
///
/// Idiomatically, these objects need to provide a `new()` method that returns an `Rc<Callable>`, as
/// that's the type used throughout the execution engine.
#[async_trait(?Send)]
pub trait BuiltinCommand {
    /// Returns the metadata for this command.
    ///
    /// The return value takes the form of a reference to force the callable to store the metadata
    /// as a struct field so that calls to this function are guaranteed to be cheap.
    fn metadata(&self) -> &CallableMetadata;

    /// Executes the command.
    ///
    /// `args` contains the arguments as provided in the invocation of the command.  Each entry in
    /// this array contains an optional expression (to support things like `PRINT a, , b`) and the
    /// separator that was used between that argument and the next.  The last entry in `args` always
    /// has `ArgSep::End` as the separator.
    ///
    /// `machine` provides mutable access to the current state of the machine invoking the command.
    ///
    /// Commands cannot return any value except for errors.
    async fn exec(&self, args: &[(Option<Expr>, ArgSep)], machine: &mut Machine) -> Result<()>;
}

/// Builder pattern for a new machine.
///
/// The `default` constructor creates a new builder for a machine with no builtin commands and no
/// builtin functions.
#[derive(Default)]
pub struct MachineBuilder {
    commands: HashMap<&'static str, Rc<dyn BuiltinCommand>>,
    functions: HashMap<&'static str, Rc<dyn BuiltinFunction>>,
}

impl MachineBuilder {
    /// Registers the given builtin command, which must not yet be registered.
    pub fn add_command(mut self, command: Rc<dyn BuiltinCommand>) -> Self {
        let metadata = command.metadata();
        assert!(
            self.commands.get(&metadata.name()).is_none(),
            "Command with the same name already registered"
        );
        self.commands.insert(metadata.name(), command);
        self
    }

    /// Registers the given builtin function, which must not yet be registered.
    pub fn add_function(mut self, function: Rc<dyn BuiltinFunction>) -> Self {
        let metadata = function.metadata();
        assert!(
            self.functions.get(&metadata.name()).is_none(),
            "Function with the same name already registered"
        );
        self.functions.insert(metadata.name(), function);
        self
    }

    /// Registers the given builtin commands.  See `add_command` for more details.
    pub fn add_commands(mut self, commands: Vec<Rc<dyn BuiltinCommand>>) -> Self {
        for command in commands {
            self = self.add_command(command);
        }
        self
    }

    /// Registers the given builtin functions.  See `add_function` for more details.
    pub fn add_functions(mut self, functions: Vec<Rc<dyn BuiltinFunction>>) -> Self {
        for function in functions {
            self = self.add_function(function);
        }
        self
    }

    /// Creates a new machine with the current configuration.
    pub fn build(self) -> Machine {
        Machine { commands: self.commands, functions: self.functions, vars: Vars::default() }
    }
}

/// Executes an EndBASIC program and tracks its state.
#[derive(Default)]
pub struct Machine {
    commands: HashMap<&'static str, Rc<dyn BuiltinCommand>>,
    functions: HashMap<&'static str, Rc<dyn BuiltinFunction>>,
    vars: Vars,
}

impl Machine {
    /// Resets the state of the machine by clearing all variable.
    pub fn clear(&mut self) {
        self.vars.clear()
    }

    /// Obtains immutable access to the builtin commands provided by this machine.
    pub fn get_commands(&self) -> &HashMap<&'static str, Rc<dyn BuiltinCommand>> {
        &self.commands
    }

    /// Obtains immutable access to the builtin functions provided by this machine.
    pub fn get_functions(&self) -> &HashMap<&'static str, Rc<dyn BuiltinFunction>> {
        &self.functions
    }

    /// Obtains immutable access to the state of the variables.
    pub fn get_vars(&self) -> &Vars {
        &self.vars
    }

    /// Obtains mutable access to the state of the variables.
    pub fn get_mut_vars(&mut self) -> &mut Vars {
        &mut self.vars
    }

    /// Retrieves the variable `name` as a boolean.  Fails if it is some other type or if it's not
    /// defined.
    pub fn get_var_as_bool(&self, name: &str) -> Result<bool> {
        match self.vars.get(&VarRef::new(name, VarType::Boolean))? {
            Value::Boolean(b) => Ok(*b),
            _ => panic!("Invalid type check in get()"),
        }
    }

    /// Retrieves the variable `name` as an integer.  Fails if it is some other type or if it's not
    /// defined.
    pub fn get_var_as_int(&self, name: &str) -> Result<i32> {
        match self.vars.get(&VarRef::new(name, VarType::Integer))? {
            Value::Integer(i) => Ok(*i),
            _ => panic!("Invalid type check in get()"),
        }
    }

    /// Retrieves the variable `name` as a string.  Fails if it is some other type or if it's not
    /// defined.
    pub fn get_var_as_string(&self, name: &str) -> Result<&str> {
        match self.vars.get(&VarRef::new(name, VarType::Text))? {
            Value::Text(s) => Ok(s),
            _ => panic!("Invalid type check in get()"),
        }
    }

    /// Assigns the value of `expr` to the variable `vref`.
    fn assign(&mut self, vref: &VarRef, expr: &Expr) -> Result<()> {
        let value = expr.eval(&self.vars, &self.functions)?;
        self.vars.set(&vref, value)?;
        Ok(())
    }

    /// Executes an `IF` statement.
    async fn do_if(&mut self, branches: &[(Expr, Vec<Statement>)]) -> Result<()> {
        for (expr, stmts) in branches {
            match expr.eval(&self.vars, &self.functions)? {
                Value::Boolean(true) => {
                    for s in stmts {
                        self.exec_one(s).await?;
                    }
                    break;
                }
                Value::Boolean(false) => (),
                _ => return new_syntax_error("IF/ELSEIF require a boolean condition"),
            };
        }
        Ok(())
    }

    /// Executes a `FOR` loop.
    async fn do_for(
        &mut self,
        iterator: &VarRef,
        start: &Expr,
        end: &Expr,
        next: &Expr,
        body: &[Statement],
    ) -> Result<()> {
        debug_assert!(
            iterator.ref_type() == VarType::Auto || iterator.ref_type() == VarType::Integer
        );
        let start_value = start.eval(&self.vars, &self.functions)?;
        match start_value {
            Value::Integer(_) => self.vars.set(iterator, start_value)?,
            _ => return new_syntax_error("FOR supports integer iteration only"),
        }

        loop {
            match end.eval(&self.vars, &self.functions)? {
                Value::Boolean(false) => {
                    break;
                }
                Value::Boolean(true) => (),
                _ => panic!("Built-in condition should have evaluated to a boolean"),
            }

            for s in body {
                self.exec_one(s).await?;
            }

            self.assign(iterator, next)?;
        }
        Ok(())
    }

    /// Executes a `WHILE` loop.
    async fn do_while(&mut self, condition: &Expr, body: &[Statement]) -> Result<()> {
        loop {
            match condition.eval(&self.vars, &self.functions)? {
                Value::Boolean(true) => {
                    for s in body {
                        self.exec_one(s).await?;
                    }
                }
                Value::Boolean(false) => break,
                _ => return new_syntax_error("WHILE requires a boolean condition"),
            }
        }
        Ok(())
    }

    /// Executes a single statement.
    async fn exec_one<'a>(&'a mut self, stmt: &'a Statement) -> Result<()> {
        match stmt {
            Statement::Assignment(vref, expr) => self.assign(vref, expr)?,
            Statement::BuiltinCall(name, args) => {
                let cmd = match self.commands.get(name.as_str()) {
                    Some(cmd) => cmd.clone(),
                    None => return new_syntax_error(format!("Unknown builtin {}", name)),
                };
                cmd.exec(&args, self).await?
            }
            Statement::If(branches) => {
                // Change this to using FutureExt::boxed_local if we ever depend on the futures or
                // futures_lite crate directly.
                let f: Pin<Box<dyn Future<Output = Result<()>>>> = Box::pin(self.do_if(branches));
                f.await?;
            }
            Statement::For(iterator, start, end, next, body) => {
                // Change this to using FutureExt::boxed_local if we ever depend on the futures or
                // futures_lite crate directly.
                let f: Pin<Box<dyn Future<Output = Result<()>>>> =
                    Box::pin(self.do_for(iterator, start, end, next, body));
                f.await?;
            }
            Statement::While(condition, body) => {
                // Change this to using FutureExt::boxed_local if we ever depend on the futures or
                // futures_lite crate directly.
                let f: Pin<Box<dyn Future<Output = Result<()>>>> =
                    Box::pin(self.do_while(condition, body));
                f.await?;
            }
        }
        Ok(())
    }

    /// Executes a program extracted from the `input` readable.
    ///
    /// Note that this does not consume `self`.  As a result, it is possible to execute multiple
    /// different programs on the same machine, all sharing state.
    pub async fn exec(&mut self, input: &mut dyn io::Read) -> Result<()> {
        let mut parser = Parser::from(input);
        while let Some(stmt) = parser.parse()? {
            self.exec_one(&stmt).await?;
        }
        Ok(())
    }
}

/// The `CLEAR` command.
pub struct ClearCommand {
    metadata: CallableMetadata,
}

impl ClearCommand {
    /// Creates a new `CLEAR` command that resets the state of the machine.
    pub fn new() -> Rc<Self> {
        Rc::from(Self {
            metadata: CallableMetadataBuilder::new("CLEAR", VarType::Void)
                .with_syntax("")
                .with_category("Interpreter manipulation")
                .with_description("Clears all variables to restore initial state.")
                .build(),
        })
    }
}

#[async_trait(?Send)]
impl BuiltinCommand for ClearCommand {
    fn metadata(&self) -> &CallableMetadata {
        &self.metadata
    }

    async fn exec(&self, args: &[(Option<Expr>, ArgSep)], machine: &mut Machine) -> Result<()> {
        if !args.is_empty() {
            return new_usage_error("CLEAR takes no arguments");
        }
        machine.clear();
        Ok(())
    }
}

#[cfg(test)]
pub(crate) mod testutils {
    use super::*;
    use std::cell::RefCell;

    /// Simplified version of `INPUT` to feed input values based on some golden `data`.
    ///
    /// Every time this command is invoked, it yields the next value from the `data` iterator and
    /// assigns it to the variable provided as its only argument.
    pub(crate) struct InCommand {
        metadata: CallableMetadata,
        data: Box<RefCell<dyn Iterator<Item = &'static &'static str>>>,
    }

    impl InCommand {
        /// Creates a new command with the golden `data`.
        pub(crate) fn new(
            data: Box<RefCell<dyn Iterator<Item = &'static &'static str>>>,
        ) -> Rc<Self> {
            Rc::from(Self {
                metadata: CallableMetadataBuilder::new("IN", VarType::Void).test_build(),
                data,
            })
        }
    }

    #[async_trait(?Send)]
    impl BuiltinCommand for InCommand {
        fn metadata(&self) -> &CallableMetadata {
            &self.metadata
        }

        async fn exec(&self, args: &[(Option<Expr>, ArgSep)], machine: &mut Machine) -> Result<()> {
            if args.len() != 1 {
                return new_usage_error("IN only takes one argument");
            }
            if args[0].1 != ArgSep::End {
                return new_usage_error("Invalid separator");
            }
            let vref = match &args[0].0 {
                Some(Expr::Symbol(vref)) => vref,
                _ => return new_usage_error("IN requires a variable reference"),
            };

            let mut data = self.data.borrow_mut();
            let raw_value = data.next().unwrap().to_owned();
            let value = Value::parse_as(vref.ref_type(), raw_value)?;
            machine.get_mut_vars().set(vref, value)?;
            Ok(())
        }
    }

    /// Simplified version of `PRINT` that captures all calls to it into `data`.
    ///
    /// This command only accepts arguments separated by the `;` short separator and concatenates
    /// them with a single space.
    pub(crate) struct OutCommand {
        metadata: CallableMetadata,
        data: Rc<RefCell<Vec<String>>>,
    }

    impl OutCommand {
        /// Creates a new command that captures all calls into `data`.
        pub(crate) fn new(data: Rc<RefCell<Vec<String>>>) -> Rc<Self> {
            Rc::from(Self {
                metadata: CallableMetadataBuilder::new("OUT", VarType::Void).test_build(),
                data,
            })
        }
    }

    #[async_trait(?Send)]
    impl BuiltinCommand for OutCommand {
        fn metadata(&self) -> &CallableMetadata {
            &self.metadata
        }

        async fn exec(&self, args: &[(Option<Expr>, ArgSep)], machine: &mut Machine) -> Result<()> {
            let mut text = String::new();
            for arg in args.iter() {
                if let Some(expr) = arg.0.as_ref() {
                    text += &expr.eval(machine.get_vars(), machine.get_functions())?.to_string();
                }
                match arg.1 {
                    ArgSep::End => break,
                    ArgSep::Short => text += " ",
                    ArgSep::Long => return new_usage_error("Cannot use the ',' separator"),
                }
            }
            self.data.borrow_mut().push(text);
            Ok(())
        }
    }
}

#[cfg(test)]
mod tests {
    use super::testutils::*;
    use super::*;
    use crate::eval::testutils::*;
    use futures_lite::future::block_on;
    use std::cell::RefCell;
    use std::rc::Rc;

    #[test]
    fn test_clear() {
        let mut machine = Machine::default();
        block_on(machine.exec(&mut b"a = TRUE: b = 1".as_ref())).expect("Execution failed");
        assert!(machine.get_var_as_bool("a").is_ok());
        assert!(machine.get_var_as_int("b").is_ok());
        machine.clear();
        assert!(machine.get_var_as_bool("a").is_err());
        assert!(machine.get_var_as_int("b").is_err());
    }

    #[test]
    fn test_get_var_as_bool() {
        let mut machine = Machine::default();
        block_on(machine.exec(&mut b"a = TRUE: b = 1".as_ref())).expect("Execution failed");
        assert!(machine.get_var_as_bool("a").expect("Failed to query a"));
        assert_eq!(
            "Incompatible types in b? reference",
            format!("{}", machine.get_var_as_bool("b").expect_err("Querying b succeeded"))
        );
        assert_eq!(
            "Undefined variable c",
            format!("{}", machine.get_var_as_bool("c").expect_err("Querying c succeeded"))
        );
    }

    #[test]
    fn test_get_var_as_int() {
        let mut machine = Machine::default();
        block_on(machine.exec(&mut b"a = 1: b = \"foo\"".as_ref())).expect("Execution failed");
        assert_eq!(1, machine.get_var_as_int("a").expect("Failed to query a"));
        assert_eq!(
            "Incompatible types in b% reference",
            format!("{}", machine.get_var_as_int("b").expect_err("Querying b succeeded"))
        );
        assert_eq!(
            "Undefined variable c",
            format!("{}", machine.get_var_as_int("c").expect_err("Querying c succeeded"))
        );
    }

    #[test]
    fn test_get_var_as_string() {
        let mut machine = Machine::default();
        block_on(machine.exec(&mut b"a = \"foo\": b = FALSE".as_ref())).expect("Execution failed");
        assert_eq!("foo", machine.get_var_as_string("a").expect("Failed to query a"));
        assert_eq!(
            "Incompatible types in b$ reference",
            format!("{}", machine.get_var_as_string("b").expect_err("Querying b succeeded"))
        );
        assert_eq!(
            "Undefined variable c",
            format!("{}", machine.get_var_as_string("c").expect_err("Querying c succeeded"))
        );
    }

    /// Runs the `input` code on a new test machine.
    ///
    /// `golden_in` is the sequence of values to yield by `IN`.
    /// `expected_out` is updated with the sequence of calls to `OUT`.
    fn run(
        input: &str,
        golden_in: &'static [&'static str],
        captured_out: Rc<RefCell<Vec<String>>>,
    ) -> Result<()> {
        let mut machine = MachineBuilder::default()
            .add_command(InCommand::new(Box::from(RefCell::from(golden_in.iter()))))
            .add_command(OutCommand::new(captured_out))
            .add_function(SumFunction::new())
            .build();
        block_on(machine.exec(&mut input.as_bytes()))
    }

    /// Runs the `input` code on a new test machine and verifies its output.
    ///
    /// `golden_in` is the sequence of values to yield by `IN`.
    /// `expected_out` is the sequence of expected calls to `OUT`.
    fn do_ok_test(
        input: &str,
        golden_in: &'static [&'static str],
        expected_out: &'static [&'static str],
    ) {
        let captured_out = Rc::from(RefCell::from(vec![]));
        run(input, golden_in, captured_out.clone()).expect("Execution failed");
        assert_eq!(expected_out, captured_out.borrow().as_slice());
    }

    /// Runs the `input` code on a new test machine and verifies that it fails with `expected_err`.
    ///
    /// Given that the code has side-effects until it fails, this follows the same process as
    /// `do_ok_test` regarding `golden_in` and `expected_out`.
    fn do_error_test(
        input: &str,
        golden_in: &'static [&'static str],
        expected_out: &'static [&'static str],
        expected_err: &str,
    ) {
        let captured_out = Rc::from(RefCell::from(vec![]));
        let err = run(input, golden_in, captured_out.clone()).expect_err("Execution did not fail");
        assert_eq!(expected_err, format!("{}", err));
        assert_eq!(expected_out, captured_out.borrow().as_slice());
    }

    /// Runs the `input` code on a new machine and verifies that it fails with `expected_err`.
    ///
    /// This is a syntactic wrapper over `do_error_test` to simplify those tests that are not
    /// expected to request any input nor generate any output.
    fn do_simple_error_test(input: &str, expected_err: &str) {
        do_error_test(input, &[], &[], expected_err);
    }

    #[test]
    fn test_assignment_ok_types() {
        do_ok_test("a = TRUE\nOUT a; a?", &[], &["TRUE TRUE"]);
        do_ok_test("a? = FALSE\nOUT a; a?", &[], &["FALSE FALSE"]);

        do_ok_test("a = 3\nOUT a; a%", &[], &["3 3"]);
        do_ok_test("a% = 3\nOUT a; a%", &[], &["3 3"]);

        do_ok_test("a = \"some text\"\nOUT a; a$", &[], &["some text some text"]);
        do_ok_test("a$ = \"some text\"\nOUT a; a$", &[], &["some text some text"]);

        do_ok_test("a = 1\na = a + 1\nOUT a", &[], &["2"]);
    }

    #[test]
    fn test_assignment_ok_case_insensitive() {
        do_ok_test("foo = 32\nOUT FOO", &[], &["32"]);
    }

    #[test]
    fn test_assignment_errors() {
        do_simple_error_test("a =\n", "Missing expression in assignment");
        do_simple_error_test("a = b\n", "Undefined variable b");
        do_simple_error_test("a = 3\na = TRUE\n", "Incompatible types in a assignment");
        do_simple_error_test("a? = 3", "Incompatible types in a? assignment");
    }

    #[test]
    fn test_if_ok() {
        let code = r#"
            IN n
            IF n = 3 THEN
                OUT "match"
            END IF
            IF n <> 3 THEN
                OUT "no match"
            END IF
        "#;
        do_ok_test(code, &["3"], &["match"]);
        do_ok_test(code, &["5"], &["no match"]);

        let code = r#"
            IN n
            IF n = 1 THEN
                OUT "first"
            ELSEIF n = 2 THEN
                OUT "second"
            ELSEIF n = 3 THEN
                OUT "third"
            ELSE
                OUT "fourth"
            END IF
        "#;
        do_ok_test(code, &["1"], &["first"]);
        do_ok_test(code, &["2"], &["second"]);
        do_ok_test(code, &["3"], &["third"]);
        do_ok_test(code, &["4"], &["fourth"]);
    }

    #[test]
    fn test_if_ok_on_malformed_branch() {
        let code = r#"
            IN n
            IF n = 3 THEN
                OUT "match"
            ELSEIF "foo" THEN 'Invalid expression type but not evaluated.
                OUT "no match"
            END IF
        "#;
        do_ok_test(code, &["3"], &["match"]);
        do_error_test(code, &["5"], &[], "IF/ELSEIF require a boolean condition");
    }

    #[test]
    fn test_if_errors() {
        do_simple_error_test("IF TRUE THEN END IF", "Expecting newline after THEN");
        do_simple_error_test(
            "IF TRUE THEN\nELSE IF TRUE THEN\nEND IF",
            "Expecting newline after ELSE",
        );
        do_simple_error_test("IF TRUE\nEND IF\nOUT 3", "No THEN in IF statement");

        do_simple_error_test("IF 2\nEND IF", "No THEN in IF statement");
        do_simple_error_test("IF 2 THEN\nEND IF", "IF/ELSEIF require a boolean condition");
        do_simple_error_test(
            "IF FALSE THEN\nELSEIF 2 THEN\nEND IF",
            "IF/ELSEIF require a boolean condition",
        );
    }

    #[test]
    fn test_for_incrementing() {
        let code = r#"
            IN first
            IN last
            FOR a = first TO last
                OUT "a is"; a
            NEXT
        "#;
        do_ok_test(code, &["0", "0"], &["a is 0"]);
        do_ok_test(code, &["0", "3"], &["a is 0", "a is 1", "a is 2", "a is 3"]);
    }

    #[test]
    fn test_for_incrementing_with_step() {
        let code = r#"
            IN first
            IN last
            FOR a = first TO last STEP 3
                OUT "a is"; a
            NEXT
        "#;
        do_ok_test(code, &["0", "0"], &["a is 0"]);
        do_ok_test(code, &["0", "2"], &["a is 0"]);
        do_ok_test(code, &["0", "3"], &["a is 0", "a is 3"]);
        do_ok_test(code, &["0", "10"], &["a is 0", "a is 3", "a is 6", "a is 9"]);
    }

    #[test]
    fn test_for_decrementing_with_step() {
        let code = r#"
            IN first
            IN last
            FOR a = first TO last STEP -2
                OUT "a is"; a
            NEXT
        "#;
        do_ok_test(code, &["0", "0"], &["a is 0"]);
        do_ok_test(code, &["2", "0"], &["a is 2", "a is 0"]);
        do_ok_test(code, &["-2", "-6"], &["a is -2", "a is -4", "a is -6"]);
        do_ok_test(code, &["10", "1"], &["a is 10", "a is 8", "a is 6", "a is 4", "a is 2"]);
    }

    #[test]
    fn test_for_already_done() {
        do_ok_test("FOR i = 10 TO 9\nOUT i\nNEXT", &[], &[]);
        do_ok_test("FOR i = 9 TO 10 STEP -1\nOUT i\nNEXT", &[], &[]);
    }

    #[test]
    fn test_for_iterator_is_visible_after_next() {
        let code = r#"
            FOR something = 1 TO 10 STEP 8
            NEXT
            OUT something
        "#;
        do_ok_test(code, &[], &["17"]);
    }

    #[test]
    fn test_for_iterator_can_be_modified() {
        let code = r#"
            FOR something = 1 TO 5
                OUT something
                something = something + 1
            NEXT
        "#;
        do_ok_test(code, &[], &["1", "3", "5"]);
    }

    #[test]
    fn test_for_errors() {
        do_simple_error_test("FOR\nNEXT", "No iterator name in FOR statement");
        do_simple_error_test("FOR a = 1 TO 10\nEND IF", "Unexpected token End in statement");

        do_simple_error_test("FOR i = \"a\" TO 3\nNEXT", "FOR supports integer iteration only");
        do_simple_error_test(
            "FOR i = 1 TO \"a\"\nNEXT",
            "Cannot compare Integer(1) and Text(\"a\") with <=",
        );

        do_simple_error_test(
            "FOR i = \"b\" TO 7 STEP -8\nNEXT",
            "FOR supports integer iteration only",
        );
        do_simple_error_test(
            "FOR i = 1 TO \"b\" STEP -8\nNEXT",
            "Cannot compare Integer(1) and Text(\"b\") with >=",
        );

        do_simple_error_test("FOR a = 1.0 TO 10.0\nNEXT", "FOR supports integer iteration only");
    }

    #[test]
    fn test_function_call_ok() {
        do_ok_test("x = 3\nOUT SUM(x, Sum%(4, 5), 1, sum())", &[], &["13"]);
    }

    #[test]
    fn test_function_call_errors() {
        do_simple_error_test("OUT SUM?()", "Incompatible type annotation for function call");
    }

    #[test]
    fn test_while_ok() {
        let code = r#"
            IN n
            WHILE n > 0
                OUT "n is"; n
                n = n - 1
            END WHILE
        "#;
        do_ok_test(code, &["0"], &[]);
        do_ok_test(code, &["3"], &["n is 3", "n is 2", "n is 1"]);

        do_ok_test("WHILE FALSE\nOUT 1\nEND WHILE", &[], &[]);
    }

    #[test]
    fn test_while_errors() {
        do_simple_error_test("WHILE\nEND WHILE", "No expression in WHILE statement");
        do_simple_error_test("WHILE\nEND IF", "WHILE without END WHILE");

        do_simple_error_test("WHILE 2\n", "WHILE without END WHILE");
        do_simple_error_test("WHILE 2\nEND WHILE", "WHILE requires a boolean condition");
    }

    #[test]
    fn test_misc_comments_and_spaces() {
        let code = r#"
            REM This is the start of the program.

            OUT "Hello" 'Some remark here.

            IF TRUE THEN

                OUT "Bye" 'And another remark here after a blank line.
            END IF
        "#;
        do_ok_test(code, &[], &["Hello", "Bye"]);
    }

    #[test]
    fn test_top_level_errors() {
        do_simple_error_test("FOO BAR", "Unknown builtin FOO");
        do_error_test("OUT \"a\"\nFOO BAR\nOUT \"b\"", &[], &["a"], "Unknown builtin FOO");

        do_simple_error_test("+ b", "Unexpected token Plus in statement");
        do_error_test(
            "OUT \"a\"\n+ b\nOUT \"b\"",
            &[],
            &["a"],
            "Unexpected token Plus in statement",
        );
    }

    #[test]
    fn test_exec_shares_state() {
        let mut machine = Machine::default();
        block_on(machine.exec(&mut b"a = 10".as_ref())).expect("Execution failed");
        block_on(machine.exec(&mut b"b = a".as_ref())).expect("Execution failed");
    }

    #[test]
    fn test_clear_ok() {
        let mut machine = MachineBuilder::default().add_command(ClearCommand::new()).build();
        block_on(machine.exec(&mut b"a = 1".as_ref())).unwrap();
        assert!(machine.get_var_as_int("a").is_ok());
        block_on(machine.exec(&mut b"CLEAR".as_ref())).unwrap();
        assert!(machine.get_var_as_int("a").is_err());
    }

    #[test]
    fn test_clear_errors() {
        let mut machine = MachineBuilder::default().add_command(ClearCommand::new()).build();
        assert_eq!(
            "CLEAR takes no arguments",
            format!("{}", block_on(machine.exec(&mut b"CLEAR 123".as_ref())).unwrap_err())
        );
    }
}