encode_unicode/traits.rs
1/* Copyright 2016-2022 Torbjørn Birch Moltu
2 * Copyright 2018 Aljoscha Meyer
3 *
4 * Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
5 * http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
6 * http://opensource.org/licenses/MIT>, at your option. This file may not be
7 * copied, modified, or distributed except according to those terms.
8 */
9
10use crate::utf8_char::Utf8Char;
11use crate::utf16_char::Utf16Char;
12use crate::utf8_iterators::*;
13use crate::utf16_iterators::*;
14use crate::decoding_iterators::*;
15use crate::error::*;
16use crate::error::Utf8ErrorKind::*;
17extern crate core;
18use core::{char, u32};
19use core::ops::{Not, Index, RangeFull};
20use core::borrow::Borrow;
21#[cfg(feature="ascii")]
22extern crate ascii;
23#[cfg(feature="ascii")]
24use ascii::AsciiStr;
25
26// TODO better docs and tests
27
28/// Methods for working with `u8`s as UTF-8 bytes.
29pub trait U8UtfExt {
30 /// How many more bytes will you need to complete this codepoint?
31 ///
32 /// # Errors
33 ///
34 /// An error is returned if the byte is not a valid start of an UTF-8
35 /// codepoint:
36 ///
37 /// * `128..192`: [`UnexpectedContinuationByte`](error/enum.Utf8ErrorKind.html#variant.UnexpectedContinuationByte)
38 /// * `245..`, `192` and `193`: [`NonUtf8Byte`](error/enum.Utf8ErrorKind.html#variant.NonUtf8Byte)
39 fn extra_utf8_bytes(self) -> Result<usize,Utf8Error>;
40
41 /// How many more bytes will you need to complete this codepoint?
42 ///
43 /// This function assumes that the byte is a valid UTF-8 start, and might
44 /// return any value otherwise. (but the function is safe to call with any
45 /// value and will return a consistent result).
46 fn extra_utf8_bytes_unchecked(self) -> usize;
47}
48
49impl U8UtfExt for u8 {
50 #[inline]
51 fn extra_utf8_bytes(self) -> Result<usize,Utf8Error> {
52 match self {
53 0x00..=0x7f => Ok(0),
54 0xc2..=0xdf => Ok(1),
55 0xe0..=0xef => Ok(2),
56 0xf0..=0xf4 => Ok(3),
57 0xc0..=0xc1 | 0xf5..=0xff => Err(Utf8Error{ kind: NonUtf8Byte }),// too big or overlong
58 0x80..=0xbf => Err(Utf8Error{ kind: UnexpectedContinuationByte }),// following byte
59 }
60 }
61 #[inline]
62 fn extra_utf8_bytes_unchecked(self) -> usize {
63 // For fun I've optimized this function (for x86 instruction count):
64 // The most straightforward implementation, that lets the compiler do
65 // the optimizing:
66 //match self {
67 // 0b0000_0000...0b0111_1111 => 0,
68 // 0b1100_0010...0b1101_1111 => 1,
69 // 0b1110_0000...0b1110_1111 => 2,
70 // 0b1111_0000...0b1111_0100 => 3,
71 // _ => whatever()
72 //}
73 // Using `unsafe{core::hint::unreachable_unchecked()}` for the
74 // "don't care" case is a terrible idea: while having the function
75 // non-deterministically return whatever happens to be in a register
76 // MIGHT be acceptable, it permits the function to not `ret`urn at all,
77 // but let execution fall through to whatever comes after it in the
78 // binary! (in other words completely UB).
79 // Currently unreachable_unchecked() might trap too,
80 // which is certainly not what we want.
81 // I also think `unsafe{mem::unitialized()}` is much more likely to
82 // explicitly produce whatever happens to be in a register than tell
83 // the compiler it can ignore this branch but needs to produce a value.
84 //
85 // From the bit patterns we see that for non-ASCII values the result is
86 // (number of leading set bits) - 1
87 // The standard library doesn't have a method for counting leading ones,
88 // but it has leading_zeros(), which can be used after inverting.
89 // This function can therefore be reduced to the one-liner
90 //`self.not().leading_zeros().saturating_sub(1) as usize`, which would
91 // be branchless for architectures with instructions for
92 // leading_zeros() and saturating_sub().
93
94 // Shortest version as long as ASCII-ness can be predicted: (especially
95 // if the BSR instruction which leading_zeros() uses is microcoded or
96 // doesn't exist)
97 // u8.leading_zeros() would cast to a bigger type internally, so that's
98 // free. compensating by shifting left by 24 before inverting lets the
99 // compiler know that the value passed to leading_zeros() is not zero,
100 // for which BSR's output is undefined and leading_zeros() normally has
101 // special case with a branch.
102 // Shifting one bit too many left acts as a saturating_sub(1).
103 if self<128 {0} else {((self as u32)<<25).not().leading_zeros() as usize}
104
105 // Branchless but longer version: (9 instructions)
106 // It's tempting to try (self|0x80).not().leading_zeros().wrapping_sub(1),
107 // but that produces high lengths for ASCII values 0b01xx_xxxx.
108 // If we could somehow (branchlessy) clear that bit for ASCII values...
109 // We can by masking with the value shifted right with sign extension!
110 // (any nonzero number of bits in range works)
111 //let extended = self as i8 as i32;
112 //let ascii_cleared = (extended<<25) & (extended>>25);
113 //ascii_cleared.not().leading_zeros() as usize
114
115 // cmov version: (7 instructions)
116 //(((self as u32)<<24).not().leading_zeros() as usize).saturating_sub(1)
117 }
118}
119
120
121/// Methods for working with `u16`s as UTF-16 units.
122pub trait U16UtfExt {
123 /// Will you need an extra unit to complete this codepoint?
124 ///
125 /// Returns `Err` for trailing surrogates, `Ok(true)` for leading surrogates,
126 /// and `Ok(false)` for others.
127 fn utf16_needs_extra_unit(self) -> Result<bool,Utf16FirstUnitError>;
128
129 /// Does this `u16` need another `u16` to complete a codepoint?
130 /// Returns `(self & 0xfc00) == 0xd800`
131 ///
132 /// Is basically an unchecked variant of `utf16_needs_extra_unit()`.
133 fn is_utf16_leading_surrogate(self) -> bool;
134}
135impl U16UtfExt for u16 {
136 #[inline]
137 fn utf16_needs_extra_unit(self) -> Result<bool,Utf16FirstUnitError> {
138 match self {
139 // https://en.wikipedia.org/wiki/UTF-16#U.2B10000_to_U.2B10FFFF
140 0x00_00..=0xd7_ff | 0xe0_00..=0xff_ff => Ok(false),
141 0xd8_00..=0xdb_ff => Ok(true),
142 _ => Err(Utf16FirstUnitError)
143 }
144 }
145 #[inline]
146 fn is_utf16_leading_surrogate(self) -> bool {
147 (self & 0xfc00) == 0xd800// Clear the ten content bytes of a surrogate,
148 // and see if it's a leading surrogate.
149 }
150}
151
152
153
154
155/// Extension trait for `char` that adds methods for converting to and from UTF-8 or UTF-16.
156pub trait CharExt: Sized {
157 /// Get the UTF-8 representation of this codepoint.
158 ///
159 /// `Utf8Char` is to `[u8;4]` what `char` is to `u32`:
160 /// a restricted type that cannot be mutated internally.
161 fn to_utf8(self) -> Utf8Char;
162
163 /// Get the UTF-16 representation of this codepoint.
164 ///
165 /// `Utf16Char` is to `[u16;2]` what `char` is to `u32`:
166 /// a restricted type that cannot be mutated internally.
167 fn to_utf16(self) -> Utf16Char;
168
169 /// Iterate over or [read](https://doc.rust-lang.org/std/io/trait.Read.html)
170 /// the one to four bytes in the UTF-8 representation of this codepoint.
171 ///
172 /// An identical alternative to the unstable `char.encode_utf8()`.
173 /// That method somehow still exist on stable, so I have to use a different name.
174 fn iter_utf8_bytes(self) -> Utf8Iterator;
175
176 /// Iterate over the one or two units in the UTF-16 representation of this codepoint.
177 ///
178 /// An identical alternative to the unstable `char.encode_utf16()`.
179 /// That method somehow still exist on stable, so I have to use a different name.
180 fn iter_utf16_units(self) -> Utf16Iterator;
181
182
183 /// Convert this char to an UTF-8 array, and also return how many bytes of
184 /// the array are used,
185 ///
186 /// The returned array is left-aligned with unused bytes set to zero.
187 fn to_utf8_array(self) -> ([u8; 4], usize);
188
189 /// Convert this `char` to UTF-16.
190 ///
191 /// The second element is non-zero when a surrogate pair is required.
192 ///
193 /// # Examples
194 ///
195 /// ```
196 /// use encode_unicode::CharExt;
197 ///
198 /// assert_eq!('@'.to_utf16_array(), ['@' as u16, 0]);
199 /// assert_eq!('睷'.to_utf16_array(), ['睷' as u16, 0]);
200 /// assert_eq!('\u{abcde}'.to_utf16_array(), [0xda6f, 0xdcde]);
201 /// ```
202 fn to_utf16_array(self) -> [u16; 2];
203
204 /// Convert this `char` to UTF-16.
205 /// The second item is `Some` if a surrogate pair is required.
206 ///
207 /// # Examples
208 ///
209 /// ```
210 /// use encode_unicode::CharExt;
211 ///
212 /// assert_eq!('@'.to_utf16_tuple(), ('@' as u16, None));
213 /// assert_eq!('睷'.to_utf16_tuple(), ('睷' as u16, None));
214 /// assert_eq!('\u{abcde}'.to_utf16_tuple(), (0xda6f, Some(0xdcde)));
215 /// ```
216 fn to_utf16_tuple(self) -> (u16, Option<u16>);
217
218
219
220 /// Create a `char` from the start of an UTF-8 slice,
221 /// and also return how many bytes were used.
222 ///
223 /// # Errors
224 ///
225 /// Returns an `Err` if the slice is empty, doesn't start with a valid
226 /// UTF-8 sequence or is too short for the sequence.
227 ///
228 /// # Examples
229 ///
230 /// ```
231 /// use encode_unicode::CharExt;
232 /// use encode_unicode::error::Utf8ErrorKind::*;
233 ///
234 /// assert_eq!(char::from_utf8_slice_start(&[b'A', b'B', b'C']), Ok(('A',1)));
235 /// assert_eq!(char::from_utf8_slice_start(&[0xdd, 0xbb]), Ok(('\u{77b}',2)));
236 ///
237 /// assert_eq!(char::from_utf8_slice_start(&[]).unwrap_err(), TooFewBytes);
238 /// assert_eq!(char::from_utf8_slice_start(&[0xf0, 0x99]).unwrap_err(), TooFewBytes);
239 /// assert_eq!(char::from_utf8_slice_start(&[0xee, b'F', 0x80]).unwrap_err(), InterruptedSequence);
240 /// assert_eq!(char::from_utf8_slice_start(&[0xee, 0x99, 0x0f]).unwrap_err(), InterruptedSequence);
241 /// ```
242 fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),Utf8Error>;
243
244 /// Create a `char` from the start of an UTF-16 slice,
245 /// and also return how many units were used.
246 ///
247 /// If you want to continue after an error, continue with the next `u16` unit.
248 fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), Utf16SliceError>;
249
250
251 /// Convert an UTF-8 sequence as returned from `.to_utf8_array()` into a `char`
252 ///
253 /// The codepoint must start at the first byte, and leftover bytes are ignored.
254 ///
255 /// # Errors
256 ///
257 /// Returns an `Err` if the array doesn't start with a valid UTF-8 sequence.
258 ///
259 /// # Examples
260 ///
261 /// ```
262 /// use encode_unicode::CharExt;
263 /// use encode_unicode::error::Utf8ErrorKind::*;
264 ///
265 /// assert_eq!(char::from_utf8_array([b'A', 0, 0, 0]), Ok('A'));
266 /// assert_eq!(char::from_utf8_array([0xf4, 0x8b, 0xbb, 0xbb]), Ok('\u{10befb}'));
267 /// assert_eq!(char::from_utf8_array([b'A', b'B', b'C', b'D']), Ok('A'));
268 /// assert_eq!(char::from_utf8_array([0, 0, 0xcc, 0xbb]), Ok('\0'));
269 ///
270 /// assert_eq!(char::from_utf8_array([0xef, b'F', 0x80, 0x80]).unwrap_err(), InterruptedSequence);
271 /// assert_eq!(char::from_utf8_array([0xc1, 0x80, 0, 0]).unwrap_err().kind(), NonUtf8Byte);
272 /// assert_eq!(char::from_utf8_array([0xe0, 0x9a, 0xbf, 0]).unwrap_err().kind(), OverlongEncoding);
273 /// assert_eq!(char::from_utf8_array([0xf4, 0xaa, 0x99, 0x88]).unwrap_err(), TooHighCodepoint);
274 /// ```
275 fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,Utf8Error>;
276
277 /// Convert a UTF-16 pair as returned from `.to_utf16_array()` into a `char`.
278 ///
279 /// The second element is ignored when not required.
280 ///
281 /// # Examples
282 ///
283 /// ```
284 /// use encode_unicode::CharExt;
285 /// use encode_unicode::error::Utf16ArrayError;
286 ///
287 /// assert_eq!(char::from_utf16_array(['x' as u16, 'y' as u16]), Ok('x'));
288 /// assert_eq!(char::from_utf16_array(['睷' as u16, 0]), Ok('睷'));
289 /// assert_eq!(char::from_utf16_array([0xda6f, 0xdcde]), Ok('\u{abcde}'));
290 /// assert_eq!(char::from_utf16_array([0xf111, 0xdbad]), Ok('\u{f111}'));
291 /// assert_eq!(char::from_utf16_array([0xdaaf, 0xdaaf]), Err(Utf16ArrayError::SecondIsNotTrailingSurrogate));
292 /// assert_eq!(char::from_utf16_array([0xdcac, 0x9000]), Err(Utf16ArrayError::FirstIsTrailingSurrogate));
293 /// ```
294 fn from_utf16_array(utf16: [u16; 2]) -> Result<Self, Utf16ArrayError>;
295
296 /// Convert a UTF-16 pair as returned from `.to_utf16_tuple()` into a `char`.
297 fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, Utf16TupleError>;
298
299
300 /// Convert an UTF-8 sequence into a char.
301 ///
302 /// The length of the slice is taken as length of the sequence;
303 /// it should be 1,2,3 or 4.
304 ///
305 /// # Safety
306 ///
307 /// The slice must contain exactly one, valid, UTF-8 sequence.
308 ///
309 /// Passing a slice that produces an invalid codepoint is always undefined
310 /// behavior; Later checks that the codepoint is valid can be removed
311 /// by the compiler.
312 ///
313 /// # Panics
314 ///
315 /// If the slice is empty
316 unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self;
317
318 /// Convert a UTF-16 array as returned from `.to_utf16_array()` into a
319 /// `char`.
320 ///
321 /// This function is safe because it avoids creating invalid codepoints,
322 /// but the returned value might not be what one expectedd.
323 ///
324 /// # Examples
325 ///
326 /// ```
327 /// use encode_unicode::CharExt;
328 ///
329 /// // starts with a trailing surrogate - converted as if it was a valid
330 /// // surrogate pair anyway.
331 /// assert_eq!(char::from_utf16_array_unchecked([0xdbad, 0xf19e]), '\u{fb59e}');
332 /// // missing trailing surrogate - ditto
333 /// assert_eq!(char::from_utf16_array_unchecked([0xd802, 0]), '\u{10800}');
334 /// ```
335 fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self;
336
337 /// Convert a UTF-16 tuple as returned from `.to_utf16_tuple()` into a `char`.
338 ///
339 /// # Safety
340 ///
341 /// If the second element is `None`, the first element must be a codepoint
342 /// in the basic multilingual pane.
343 /// (In other words, outside the range`0xd8_00..0xe0_00`.)
344 /// Violating this results in an invalid `char` in that reserved range
345 /// being created, which is (or can easily lead to) undefined behavior.
346 unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self;
347
348
349 /// Produces more detailed errors than `char::from_u32()`
350 ///
351 /// # Errors
352 ///
353 /// This function will return an error if
354 ///
355 /// * the value is greater than 0x10ffff
356 /// * the value is between 0xd800 and 0xdfff (inclusive)
357 ///
358 /// # Examples
359 ///
360 /// ```
361 /// use encode_unicode::CharExt;
362 /// use encode_unicode::error::CodepointError;
363 ///
364 /// assert_eq!(char::from_u32_detailed(0x41), Ok('A'));
365 /// assert_eq!(char::from_u32_detailed(0x40_00_00), Err(CodepointError::TooHigh));
366 /// assert_eq!(char::from_u32_detailed(0xd951), Err(CodepointError::Utf16Reserved));
367 /// assert_eq!(char::from_u32_detailed(0xdddd), Err(CodepointError::Utf16Reserved));
368 /// assert_eq!(char::from_u32_detailed(0xdd), Ok('Ý'));
369 /// assert_eq!(char::from_u32_detailed(0x1f331), Ok('🌱'));
370 /// ```
371 fn from_u32_detailed(c: u32) -> Result<Self,CodepointError>;
372}
373
374
375
376impl CharExt for char {
377 /////////
378 //UTF-8//
379 /////////
380
381 fn to_utf8(self) -> Utf8Char {
382 self.into()
383 }
384 fn iter_utf8_bytes(self) -> Utf8Iterator {
385 self.to_utf8().into_iter()
386 }
387
388 fn to_utf8_array(self) -> ([u8; 4], usize) {
389 let len = self.len_utf8();
390 let mut c = self as u32;
391 if len == 1 {// ASCII, the common case
392 ([c as u8, 0, 0, 0], 1)
393 } else {
394 let mut parts = 0;// convert to 6-bit bytes
395 parts |= c & 0x3f; c>>=6;
396 parts<<=8; parts |= c & 0x3f; c>>=6;
397 parts<<=8; parts |= c & 0x3f; c>>=6;
398 parts<<=8; parts |= c & 0x3f;
399 parts |= 0x80_80_80_80;// set the most significant bit
400 parts >>= 8*(4-len);// right-align bytes
401 // Now, unused bytes are zero, (which matters for Utf8Char.eq())
402 // and the rest are 0b10xx_xxxx
403
404 // set header on first byte
405 parts |= (0xff_00u32 >> len) & 0xff;// store length
406 parts &= Not::not(1u32 << (7-len));// clear the next bit after it
407
408 (parts.to_le_bytes(), len)
409 }
410 }
411
412
413 fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),Utf8Error> {
414 let first = match src.first() {
415 Some(first) => *first,
416 None => return Err(Utf8Error{ kind: TooFewBytes }),
417 };
418 let bytes = match first.extra_utf8_bytes() {
419 Err(e) => return Err(e),
420 Ok(0) => return Ok((first as char, 1)),
421 Ok(extra) if extra >= src.len()
422 => return Err(Utf8Error{ kind: TooFewBytes }),
423 Ok(extra) => &src[..=extra],
424 };
425 if bytes.iter().skip(1).any(|&b| (b >> 6) != 0b10 ) {
426 Err(Utf8Error{ kind: InterruptedSequence })
427 } else if overlong(bytes[0], bytes[1]) {
428 Err(Utf8Error{ kind: OverlongEncoding })
429 } else {
430 match char::from_u32_detailed(merge_nonascii_unchecked_utf8(bytes)) {
431 Ok(c) => Ok((c, bytes.len())),
432 Err(CodepointError::Utf16Reserved) => {
433 Err(Utf8Error{ kind: Utf16ReservedCodepoint })
434 },
435 Err(CodepointError::TooHigh) => Err(Utf8Error{ kind: TooHighCodepoint }),
436 }
437 }
438 }
439
440 fn from_utf8_array(utf8: [u8; 4]) -> Result<Self,Utf8Error> {
441 let src = match utf8[0].extra_utf8_bytes() {
442 Err(error) => return Err(error),
443 Ok(0) => return Ok(utf8[0] as char),
444 Ok(extra) => &utf8[..=extra],
445 };
446 if src[1..].iter().any(|&b| (b >> 6) != 0b10 ) {
447 Err(Utf8Error{ kind: InterruptedSequence })
448 } else if overlong(utf8[0], utf8[1]) {
449 Err(Utf8Error{ kind: OverlongEncoding })
450 } else {
451 match char::from_u32_detailed(merge_nonascii_unchecked_utf8(src)) {
452 Ok(c) => Ok(c),
453 Err(CodepointError::Utf16Reserved) => {
454 Err(Utf8Error{ kind: Utf16ReservedCodepoint })
455 },
456 Err(CodepointError::TooHigh) => Err(Utf8Error{ kind: TooHighCodepoint }),
457 }
458 }
459 }
460
461 unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self {
462 unsafe {
463 if src.len() == 1 {
464 src[0] as char
465 } else {
466 char::from_u32_unchecked(merge_nonascii_unchecked_utf8(src))
467 }
468 }
469 }
470
471
472
473 //////////
474 //UTF-16//
475 //////////
476
477 fn to_utf16(self) -> Utf16Char {
478 Utf16Char::from(self)
479 }
480 fn iter_utf16_units(self) -> Utf16Iterator {
481 self.to_utf16().into_iter()
482 }
483
484 fn to_utf16_array(self) -> [u16;2] {
485 let (first, second) = self.to_utf16_tuple();
486 [first, second.unwrap_or(0)]
487 }
488 fn to_utf16_tuple(self) -> (u16, Option<u16>) {
489 if self <= '\u{ffff}' {// single
490 (self as u16, None)
491 } else {// double
492 let c = self as u32 - 0x_01_00_00;
493 let high = 0x_d8_00 + (c >> 10);
494 let low = 0x_dc_00 + (c & 0x_03_ff);
495 (high as u16, Some(low as u16))
496 }
497 }
498
499
500 fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), Utf16SliceError> {
501 use crate::errors::Utf16SliceError::*;
502 unsafe {match (src.get(0), src.get(1)) {
503 (Some(&u @ 0x00_00..=0xd7_ff), _) |
504 (Some(&u @ 0xe0_00..=0xff_ff), _)
505 => Ok((char::from_u32_unchecked(u as u32), 1)),
506 (Some(0xdc_00..=0xdf_ff), _) => Err(FirstIsTrailingSurrogate),
507 (None, _) => Err(EmptySlice),
508 (Some(&f @ 0xd8_00..=0xdb_ff), Some(&s @ 0xdc_00..=0xdf_ff))
509 => Ok((char::from_utf16_tuple_unchecked((f, Some(s))), 2)),
510 (Some(0xd8_00..=0xdb_ff), Some(_)) => Err(SecondIsNotTrailingSurrogate),
511 (Some(0xd8_00..=0xdb_ff), None) => Err(MissingSecond),
512 }}
513 }
514
515 fn from_utf16_array(utf16: [u16;2]) -> Result<Self, Utf16ArrayError> {
516 use crate::errors::Utf16ArrayError::*;
517 if let Some(c) = char::from_u32(utf16[0] as u32) {
518 Ok(c) // single
519 } else if utf16[0] < 0xdc_00 && utf16[1] & 0xfc_00 == 0xdc_00 {
520 // correct surrogate pair
521 Ok(combine_surrogates(utf16[0], utf16[1]))
522 } else if utf16[0] < 0xdc_00 {
523 Err(SecondIsNotTrailingSurrogate)
524 } else {
525 Err(FirstIsTrailingSurrogate)
526 }
527 }
528 fn from_utf16_tuple(utf16: (u16, Option<u16>)) -> Result<Self, Utf16TupleError> {
529 unsafe {
530 match Utf16Char::validate_tuple(utf16) {
531 Ok(()) => Ok(Self::from_utf16_tuple_unchecked(utf16)),
532 Err(e) => Err(e),
533 }
534 }
535 }
536
537 fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self {
538 // treat any array with a surrogate value in [0] as a surrogate because
539 // combine_surrogates() is safe.
540 // `(utf16[0] & 0xf800) == 0xd80` might not be quite as fast as
541 // `utf16[1] != 0`, but avoiding the potential for UB is worth it
542 // since the conversion isn't zero-cost in either case.
543 char::from_u32(utf16[0] as u32)
544 .unwrap_or_else(|| combine_surrogates(utf16[0], utf16[1]) )
545 }
546 unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option<u16>)) -> Self {
547 unsafe {
548 match utf16.1 {
549 Some(second) => combine_surrogates(utf16.0, second),
550 None => char::from_u32_unchecked(utf16.0 as u32)
551 }
552 }
553 }
554
555
556 fn from_u32_detailed(c: u32) -> Result<Self,CodepointError> {
557 match char::from_u32(c) {
558 Some(c) => Ok(c),
559 None if c > 0x10_ff_ff => Err(CodepointError::TooHigh),
560 None => Err(CodepointError::Utf16Reserved),
561 }
562 }
563}
564
565// Adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c
566fn overlong(first: u8, second: u8) -> bool {
567 if first < 0x80 {
568 false
569 } else if (first & 0xe0) == 0xc0 {
570 (first & 0xfe) == 0xc0
571 } else if (first & 0xf0) == 0xe0 {
572 first == 0xe0 && (second & 0xe0) == 0x80
573 } else {
574 first == 0xf0 && (second & 0xf0) == 0x80
575 }
576}
577
578/// Decodes the codepoint represented by a multi-byte UTF-8 sequence.
579///
580/// Does not check that the codepoint is valid,
581/// and returns `u32` because casting invalid codepoints to `char` is insta UB.
582fn merge_nonascii_unchecked_utf8(src: &[u8]) -> u32 {
583 let mut c = src[0] as u32 & (0x7f >> src.len());
584 for b in &src[1..] {
585 c = (c << 6) | (b & 0b0011_1111) as u32;
586 }
587 c
588}
589
590/// Create a `char` from a leading and a trailing surrogate.
591///
592/// This function is safe because it ignores the six most significant bits of
593/// each argument and always produces a codepoint in `0x01_00_00..=0x10_ff_ff`.
594fn combine_surrogates(first: u16, second: u16) -> char {
595 unsafe {
596 let high = (first & 0x_03_ff) as u32;
597 let low = (second & 0x_03_ff) as u32;
598 let c = ((high << 10) | low) + 0x_01_00_00; // no, the constant can't be or'd in
599 char::from_u32_unchecked(c)
600 }
601}
602
603
604
605/// Adds `.utf8chars()` and `.utf16chars()` iterator constructors to `&str`.
606pub trait StrExt: AsRef<str> {
607 /// Equivalent to `.chars()` but produces `Utf8Char`s.
608 fn utf8chars(&self) -> Utf8Chars;
609 /// Equivalent to `.chars()` but produces `Utf16Char`s.
610 fn utf16chars(&self) -> Utf16Chars;
611 /// Equivalent to `.char_indices()` but produces `Utf8Char`s.
612 fn utf8char_indices(&self) -> Utf8CharIndices;
613 /// Equivalent to `.char_indices()` but produces `Utf16Char`s.
614 fn utf16char_indices(&self) -> Utf16CharIndices;
615}
616
617impl StrExt for str {
618 fn utf8chars(&self) -> Utf8Chars {
619 Utf8Chars::from(self)
620 }
621 fn utf16chars(&self) -> Utf16Chars {
622 Utf16Chars::from(self)
623 }
624 fn utf8char_indices(&self) -> Utf8CharIndices {
625 Utf8CharIndices::from(self)
626 }
627 fn utf16char_indices(&self) -> Utf16CharIndices {
628 Utf16CharIndices::from(self)
629 }
630}
631
632#[cfg(feature="ascii")]
633impl StrExt for AsciiStr {
634 fn utf8chars(&self) -> Utf8Chars {
635 Utf8Chars::from(self.as_str())
636 }
637 fn utf16chars(&self) -> Utf16Chars {
638 Utf16Chars::from(self.as_str())
639 }
640 fn utf8char_indices(&self) -> Utf8CharIndices {
641 Utf8CharIndices::from(self.as_str())
642 }
643 fn utf16char_indices(&self) -> Utf16CharIndices {
644 Utf16CharIndices::from(self.as_str())
645 }
646}
647
648
649
650/// Iterator methods that convert between `u8`s and `Utf8Char` or `u16`s and `Utf16Char`
651///
652/// All the iterator adapters also accept iterators that produce references of
653/// the type they convert from.
654pub trait IterExt: Iterator+Sized {
655 /// Converts an iterator of `Utf8Char`s or `&Utf8Char`s to an iterator of
656 /// `u8`s.
657 ///
658 /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
659 /// iterator is ~40% faster.
660 ///
661 /// The iterator also implements `Read`
662 /// (when the `std` feature isn't disabled).
663 /// Reading will never produce an error, and calls to `.read()` and `.next()`
664 /// can be mixed.
665 ///
666 /// The exact number of bytes cannot be known in advance, but `size_hint()`
667 /// gives the possible range.
668 /// (min: all remaining characters are ASCII, max: all require four bytes)
669 ///
670 /// # Examples
671 ///
672 /// From iterator of values:
673 ///
674 /// ```
675 /// use encode_unicode::{IterExt, StrExt};
676 ///
677 /// let iterator = "foo".utf8chars();
678 /// let mut bytes = [0; 4];
679 /// iterator.to_bytes().zip(&mut bytes).for_each(|(b,dst)| *dst = b );
680 /// assert_eq!(&bytes, b"foo\0");
681 /// ```
682 ///
683 /// From iterator of references:
684 ///
685 #[cfg_attr(feature="std", doc=" ```")]
686 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
687 /// use encode_unicode::{IterExt, StrExt, Utf8Char};
688 ///
689 /// let chars: Vec<Utf8Char> = "💣 bomb 💣".utf8chars().collect();
690 /// let bytes: Vec<u8> = chars.iter().to_bytes().collect();
691 /// let flat_map: Vec<u8> = chars.iter().cloned().flatten().collect();
692 /// assert_eq!(bytes, flat_map);
693 /// ```
694 ///
695 /// `Read`ing from it:
696 ///
697 #[cfg_attr(feature="std", doc=" ```")]
698 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
699 /// use encode_unicode::{IterExt, StrExt};
700 /// use std::io::Read;
701 ///
702 /// let s = "Ååh‽";
703 /// assert_eq!(s.len(), 8);
704 /// let mut buf = [b'E'; 9];
705 /// let mut reader = s.utf8chars().to_bytes();
706 /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 8);
707 /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 0);
708 /// assert_eq!(&buf[..8], s.as_bytes());
709 /// assert_eq!(buf[8], b'E');
710 /// ```
711 fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char>;
712
713 /// Converts an iterator of `Utf16Char` (or `&Utf16Char`) to an iterator of
714 /// `u16`s.
715 ///
716 /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned
717 /// iterator is about twice as fast.
718 ///
719 /// The exact number of units cannot be known in advance, but `size_hint()`
720 /// gives the possible range.
721 ///
722 /// # Examples
723 ///
724 /// From iterator of values:
725 ///
726 /// ```
727 /// use encode_unicode::{IterExt, StrExt};
728 ///
729 /// let iterator = "foo".utf16chars();
730 /// let mut units = [0; 4];
731 /// iterator.to_units().zip(&mut units).for_each(|(u,dst)| *dst = u );
732 ///
733 /// assert_eq!(units, ['f' as u16, 'o' as u16, 'o' as u16, 0]);
734 /// ```
735 ///
736 /// From iterator of references:
737 ///
738 #[cfg_attr(feature="std", doc=" ```")]
739 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
740 /// use encode_unicode::{IterExt, StrExt, Utf16Char};
741 ///
742 /// // (💣 takes two units)
743 /// let chars: Vec<Utf16Char> = "💣 bomb 💣".utf16chars().collect();
744 /// let units: Vec<u16> = chars.iter().to_units().collect();
745 /// let flat_map: Vec<u16> = chars.iter().flat_map(|u16c| *u16c ).collect();
746 ///
747 /// assert_eq!(units, flat_map);
748 /// ```
749 fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char>;
750
751 /// Decodes bytes as UTF-8 and groups them into `Utf8Char`s
752 ///
753 /// When errors (invalid values or sequences) are encountered,
754 /// it continues with the byte right after the start of the error sequence.
755 /// This is neither the most intelligent choiche (sometimes it is guaranteed to
756 /// produce another error), nor the easiest to implement, but I believe it to
757 /// be the most predictable.
758 /// It also means that ASCII characters are never hidden by errors.
759 ///
760 /// # Examples
761 ///
762 /// Replace all errors with u+FFFD REPLACEMENT_CHARACTER:
763 /// ```
764 /// use encode_unicode::{Utf8Char, IterExt};
765 ///
766 /// let mut buf = [b'\0'; 255];
767 /// let len = b"foo\xCFbar".iter()
768 /// .to_utf8chars()
769 /// .flat_map(|r| r.unwrap_or(Utf8Char::from('\u{FFFD}')) )
770 /// .zip(&mut buf[..])
771 /// .map(|(byte, dst)| *dst = byte )
772 /// .count();
773 ///
774 /// assert_eq!(&buf[..len], "foo\u{FFFD}bar".as_bytes());
775 /// ```
776 ///
777 /// Collect everything up until the first error into a string:
778 #[cfg_attr(feature="std", doc=" ```")]
779 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
780 /// use encode_unicode::iterator::Utf8CharMerger;
781 /// let mut good = String::new();
782 /// for r in Utf8CharMerger::from(b"foo\xcc\xbbbar\xcc\xddbaz") {
783 /// if let Ok(uc) = r {
784 /// good.push_str(uc.as_str());
785 /// } else {
786 /// break;
787 /// }
788 /// }
789 /// assert_eq!(good, "foo̻bar");
790 /// ```
791 ///
792 /// Abort decoding on error:
793 #[cfg_attr(feature="std", doc=" ```")]
794 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
795 /// use encode_unicode::{IterExt, Utf8Char};
796 /// use encode_unicode::error::{Utf8Error, Utf8ErrorKind};
797 ///
798 /// let result = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77".iter()
799 /// .to_utf8chars()
800 /// .collect::<Result<String,Utf8Error>>();
801 ///
802 /// assert_eq!(result.unwrap_err().kind(), Utf8ErrorKind::InterruptedSequence);
803 /// ```
804 fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8>;
805
806 /// Decodes bytes as UTF-16 and groups them into `Utf16Char`s
807 ///
808 /// When errors (unmatched leading surrogates or unexpected trailing surrogates)
809 /// are encountered, an error is produced for every unit.
810 ///
811 /// # Examples
812 ///
813 /// Replace errors with '�':
814 #[cfg_attr(feature="std", doc=" ```")]
815 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
816 /// use encode_unicode::{IterExt, Utf16Char};
817 ///
818 /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
819 /// let string = slice.iter()
820 /// .to_utf16chars()
821 /// .map(|r| r.unwrap_or(Utf16Char::from('\u{fffd}')) ) // REPLACEMENT_CHARACTER
822 /// .collect::<String>();
823 ///
824 /// assert_eq!(string, "a�🂠");
825 /// ```
826 ///
827 /// ```
828 /// use encode_unicode::{IterExt, Utf16Char};
829 /// use encode_unicode::error::Utf16PairError::*;
830 ///
831 /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'Y' as u16, 0xdab1, 0xdab1];
832 /// let mut iter = slice.iter().to_utf16chars();
833 /// assert_eq!(iter.size_hint(), (3, Some(7)));
834 /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
835 /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate)));
836 /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('\u{3faee}'))));
837 /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('Y'))));
838 /// assert_eq!(iter.next(), Some(Err(UnmatchedLeadingSurrogate)));
839 /// assert_eq!(iter.next(), Some(Err(Incomplete)));
840 /// assert_eq!(iter.into_remaining_units().next(), None);
841 /// ```
842 ///
843 /// Search for a codepoint and return the codepoint index of the first match:
844 /// ```
845 /// use encode_unicode::{IterExt, Utf16Char};
846 ///
847 /// let position = [0xd875, 0xdd4f, '≈' as u16, '2' as u16].iter()
848 /// .to_utf16chars()
849 /// .position(|r| r == Ok(Utf16Char::from('≈')) );
850 ///
851 /// assert_eq!(position, Some(1));
852 /// ```
853 fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16>;
854}
855
856impl<I:Iterator> IterExt for I {
857 fn to_bytes(self) -> Utf8CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf8Char> {
858 Utf8CharSplitter::from(self)
859 }
860 fn to_units(self) -> Utf16CharSplitter<Self::Item,Self> where Self::Item: Borrow<Utf16Char> {
861 Utf16CharSplitter::from(self)
862 }
863 fn to_utf8chars(self) -> Utf8CharMerger<Self::Item,Self> where Self::Item: Borrow<u8> {
864 Utf8CharMerger::from(self)
865 }
866 fn to_utf16chars(self) -> Utf16CharMerger<Self::Item,Self> where Self::Item: Borrow<u16> {
867 Utf16CharMerger::from(self)
868 }
869}
870
871
872/// Methods for iterating over `u8` and `u16` slices as UTF-8 or UTF-16 characters.
873///
874/// The iterators are slightly faster than the similar methods in [`IterExt`](trait.IterExt.html)
875/// because they con "push back" items for free after errors and don't need a
876/// separate buffer that must be checked on every call to `.next()`.
877pub trait SliceExt: Index<RangeFull> {
878 /// Decode `u8` slices as UTF-8 and iterate over the codepoints as `Utf8Char`s,
879 ///
880 /// # Examples
881 ///
882 /// Get the index and error type of the first error:
883 #[cfg_attr(feature="std", doc=" ```")]
884 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
885 /// use encode_unicode::{SliceExt, Utf8Char, error::Utf8ErrorKind};
886 ///
887 /// let slice = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77";
888 /// let result = slice.utf8char_indices()
889 /// .map(|(offset,r,length)| r.map_err(|e| (offset,e.kind(),length) ) )
890 /// .collect::<Result<String,(usize,Utf8ErrorKind,usize)>>();
891 ///
892 /// assert_eq!(result, Err((7, Utf8ErrorKind::TooFewBytes, 1)));
893 /// ```
894 ///
895 /// ```
896 /// use encode_unicode::{SliceExt, Utf8Char};
897 /// use std::error::Error;
898 ///
899 /// let slice = b"\xf0\xbf\xbf\xbfXY\xdd\xbb\xe1\x80\x99quux123";
900 /// let mut fixed_size = [Utf8Char::default(); 8];
901 /// for (cp_i, (byte_index, r, _)) in slice.utf8char_indices().enumerate().take(8) {
902 /// match r {
903 /// Ok(u8c) => fixed_size[cp_i] = u8c,
904 /// Err(e) => panic!("Invalid codepoint at index {} ({})", cp_i, e),
905 /// }
906 /// }
907 /// let chars = ['\u{3ffff}', 'X', 'Y', '\u{77b}', '\u{1019}', 'q', 'u', 'u'];
908 /// assert_eq!(fixed_size, chars);
909 /// ```
910 ///
911 #[cfg_attr(feature="std", doc=" ```")]
912 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
913 /// use encode_unicode::{SliceExt, Utf8Char, error::Utf8ErrorKind};
914 ///
915 /// let bytes = b"\xfa-\xf4\x8f\xee\xa1\x8f-\xed\xa9\x87\xf0\xcc\xbb";
916 /// let mut errors = Vec::new();
917 /// let mut lengths = Vec::new();
918 /// let mut string = String::new();
919 /// for (offset,result,length) in bytes.utf8char_indices() {
920 /// lengths.push((offset,length));
921 /// let c = result.unwrap_or_else(|error| {
922 /// errors.push((offset, error.kind()));
923 /// Utf8Char::from('\u{fffd}') // replacement character
924 /// });
925 /// string.push_str(c.as_str());
926 /// }
927 ///
928 /// assert_eq!(string, "�-��\u{e84f}-����\u{33b}");
929 /// assert_eq!(lengths, [(0,1), (1,1), (2,1), (3,1), (4,3), (7,1),
930 /// (8,1), (9,1), (10,1), (11,1), (12,2)]);
931 /// assert_eq!(errors, [
932 /// ( 0, Utf8ErrorKind::NonUtf8Byte),
933 /// ( 2, Utf8ErrorKind::InterruptedSequence),
934 /// ( 3, Utf8ErrorKind::UnexpectedContinuationByte),
935 /// ( 8, Utf8ErrorKind::Utf16ReservedCodepoint),
936 /// ( 9, Utf8ErrorKind::UnexpectedContinuationByte),
937 /// (10, Utf8ErrorKind::UnexpectedContinuationByte),
938 /// (11, Utf8ErrorKind::TooFewBytes), // (but it was not the last element returned!)
939 /// ]);
940 /// ```
941 fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]>;
942
943
944 /// Decode `u16` slices as UTF-16 and iterate over the codepoints as `Utf16Char`s,
945 ///
946 /// The iterator produces `(usize,Result<Utf16Char,Utf16Error>,usize)`,
947 /// and the slice is validated as you go.
948 ///
949 /// The first `usize` contains the offset from the start of the slice and
950 /// the last `usize` contains the length of the codepoint or error.
951 /// The length is either 1 or 2, and always 1 for errors.
952 ///
953 /// # Examples
954 ///
955 #[cfg_attr(feature="std", doc=" ```")]
956 #[cfg_attr(not(feature="std"), doc=" ```no_compile")]
957 /// use encode_unicode::{SliceExt, Utf8Char};
958 ///
959 /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..];
960 /// let mut errors = Vec::new();
961 /// let string = slice.utf16char_indices().map(|(offset,r,_)| match r {
962 /// Ok(u16c) => Utf8Char::from(u16c),
963 /// Err(_) => {
964 /// errors.push(offset);
965 /// Utf8Char::from('\u{fffd}') // REPLACEMENT_CHARACTER
966 /// }
967 /// }).collect::<String>();
968 ///
969 /// assert_eq!(string, "a�🂠");
970 /// assert_eq!(errors, [1]);
971 /// ```
972 ///
973 /// Search for a codepoint and return its unit and codepoint index.
974 /// ```
975 /// use encode_unicode::{SliceExt, Utf16Char};
976 ///
977 /// let slice = [0xd875,/*'𝕏'*/ 0xdd4f, '≈' as u16, '2' as u16];
978 /// let position = slice.utf16char_indices()
979 /// .enumerate()
980 /// .find(|&(_,(_,r,_))| r == Ok(Utf16Char::from('≈')) )
981 /// .map(|(codepoint, (offset, _, _))| (codepoint, offset) );
982 ///
983 /// assert_eq!(position, Some((1,2)));
984 /// ```
985 ///
986 /// Error types:
987 /// ```
988 /// use encode_unicode::{SliceExt, Utf16Char};
989 /// use encode_unicode::error::Utf16PairError::*;
990 ///
991 /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'λ' as u16, 0xdab1, 0xdab1];
992 /// let mut iter = slice.utf16char_indices();
993 /// assert_eq!(iter.next(), Some((0, Err(UnexpectedTrailingSurrogate), 1)));
994 /// assert_eq!(iter.next(), Some((1, Err(UnexpectedTrailingSurrogate), 1)));
995 /// assert_eq!(iter.next(), Some((2, Ok(Utf16Char::from('\u{3faee}')), 2)));
996 /// assert_eq!(iter.next(), Some((4, Ok(Utf16Char::from('λ')), 1)));
997 /// assert_eq!(iter.next(), Some((5, Err(UnmatchedLeadingSurrogate), 1)));
998 /// assert_eq!(iter.next(), Some((6, Err(Incomplete), 1)));
999 /// assert_eq!(iter.next(), None);
1000 /// assert_eq!(iter.as_slice(), [])
1001 /// ```
1002 fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]>;
1003}
1004
1005impl<S: ?Sized+Index<RangeFull>> SliceExt for S {
1006 fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]> {
1007 Utf8CharDecoder::from(self[..].borrow())
1008 }
1009 fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]> {
1010 Utf16CharDecoder::from(self[..].borrow())
1011 }
1012}