1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use glam::{vec2, Vec2};
use nalgebra::{Isometry2, Translation2, Vector2};
use nanoserde::DeJson;

/// The core piece of an entity, determines it's transformative state and position in the world.
#[derive(Clone, Copy, Debug, DeJson)]
pub struct Transform {
    pub translation: Translation,
    pub rotation: f32,
    pub scale: Scale,
}
impl Transform {
    pub fn from_translation<T: Into<Translation>>(into_translation: T) -> Self {
        let mut transform = Transform::default();
        transform.translation = into_translation.into();

        transform
    }
}
impl Default for Transform {
    fn default() -> Self {
        Transform {
            translation: Translation::default(),
            rotation: 0.0,
            scale: Scale::default(),
        }
    }
}
impl std::ops::Sub for Transform {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        let translation = self.translation - other.translation;
        let rotation = self.rotation - other.rotation;
        let scale = self.scale - other.scale;

        Self {
            translation,
            rotation,
            scale,
        }
    }
}
impl std::ops::Add for Transform {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        let translation = self.translation + other.translation;
        let rotation = self.rotation + other.rotation;
        let scale = self.scale + other.scale;

        Self {
            translation,
            rotation,
            scale,
        }
    }
}

#[derive(Clone, Copy, Debug, DeJson)]
pub struct Scale {
    pub x: f32,
    pub y: f32,
}
impl Scale {
    pub fn new(x: f32, y: f32) -> Self {
        Scale { x, y }
    }
}
impl Default for Scale {
    fn default() -> Self {
        Scale::new(1.0, 1.0)
    }
}
impl std::ops::Sub for Scale {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}
impl std::ops::Add for Scale {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

#[derive(Clone, Copy, Debug, DeJson)]
pub struct Translation {
    pub x: f32,
    pub y: f32,
}
impl Translation {
    pub fn new(x: f32, y: f32) -> Self {
        Translation { x, y }
    }
}
impl Default for Translation {
    fn default() -> Self {
        Translation::new(0.0, 0.0)
    }
}
impl From<Vec2> for Translation {
    #[inline]
    fn from(v: Vec2) -> Self {
        Self::new(v.x, v.y)
    }
}
impl From<Translation> for Vec2 {
    #[inline]
    fn from(t: Translation) -> Self {
        vec2(t.x, t.y)
    }
}

macro_rules! impl_translation_from_other_type_via {
    ($from_type:ty, $via_type:ty) => {
        impl From<$from_type> for Translation {
            #[inline]
            fn from(x: $from_type) -> Self {
                Self::from(<$via_type>::from(x))
            }
        }
    };
}

macro_rules! impl_translation_to_other_type_via {
    ($other_type:ty, $via_type:ty) => {
        impl From<Translation> for $other_type {
            #[inline]
            fn from(t: Translation) -> Self {
                Self::from(<$via_type>::from(t))
            }
        }
    };
}

impl_translation_from_other_type_via!(Vector2<f32>, Vec2);
impl_translation_to_other_type_via!(Vector2<f32>, Vec2);

impl_translation_from_other_type_via!(Translation2<f32>, Vec2);
impl_translation_to_other_type_via!(Translation2<f32>, Vec2);

impl_translation_to_other_type_via!(Isometry2<f32>, Translation2<f32>);

impl From<(f32, f32)> for Translation {
    fn from((x, y): (f32, f32)) -> Self {
        Translation::new(x, y)
    }
}

impl std::ops::Add for Translation {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl std::ops::AddAssign for Translation {
    fn add_assign(&mut self, rhs: Self) {
        self.x += rhs.x;
        self.y += rhs.y;
    }
}

impl std::ops::Sub for Translation {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl std::ops::SubAssign for Translation {
    fn sub_assign(&mut self, rhs: Self) {
        self.x -= rhs.x;
        self.y -= rhs.y;
    }
}

impl std::ops::Mul<f32> for Translation {
    type Output = Self;

    fn mul(self, scalar: f32) -> Self::Output {
        Self {
            x: self.x * scalar,
            y: self.y * scalar,
        }
    }
}

impl std::ops::MulAssign<f32> for Translation {
    fn mul_assign(&mut self, scalar: f32) {
        self.x *= scalar;
        self.y *= scalar;
    }
}

impl std::ops::Div<f32> for Translation {
    type Output = Self;

    fn div(self, scalar: f32) -> Self::Output {
        Self {
            x: self.x / scalar,
            y: self.y / scalar,
        }
    }
}

impl std::ops::DivAssign<f32> for Translation {
    fn div_assign(&mut self, scalar: f32) {
        self.x /= scalar;
        self.y /= scalar;
    }
}