Skip to main content

Crate embeddenator_vsa

Crate embeddenator_vsa 

Source
Expand description

Embeddenator VSA - Vector Symbolic Architecture Core

This crate provides the foundational Vector Symbolic Architecture (VSA) operations for sparse ternary representations used in Embeddenator.

§Overview

VSA is a computational framework for representing and manipulating high-dimensional vectors through algebraic operations:

  • Bundle (⊕): Superposition of multiple vectors
  • Bind (⊙): Compositional binding of associations
  • Similarity: Cosine similarity for pattern retrieval

§Core Types

§Example

use embeddenator_vsa::{SparseVec, ReversibleVSAConfig};

// Create random sparse vectors
let a = SparseVec::random();
let b = SparseVec::random();

// Bundle operation (superposition)
let bundled = a.bundle(&b);

// Compute similarity
let similarity = a.cosine(&b);
assert!(similarity >= -1.0 && similarity <= 1.0);

Re-exports§

pub use codebook::BalancedTernaryWord;
pub use codebook::Codebook;
pub use codebook::CodebookTrainingConfig;
pub use codebook::ProjectionConfig;
pub use codebook::ProjectionResult;
pub use codebook::SemanticOutlier;
pub use codebook::WordMetadata;
pub use dimensional::DifferentialEncoder;
pub use dimensional::DifferentialEncoding;
pub use dimensional::DimensionalConfig;
pub use dimensional::HyperVec;
pub use dimensional::Trit as DimTrit;
pub use dimensional::TritDepthConfig;
pub use dimensional::Tryte;
pub use phase_training::train_codebook_with_phases;
pub use phase_training::PhaseTrainer;
pub use phase_training::PhaseTrainingConfig;
pub use phase_training::PhaseTrainingStats;
pub use phase_training::TrainingPhase;
pub use reversible_encoding::ReversibleVSAEncoder;
pub use reversible_encoding::MAX_POSITIONS;
pub use simd_cosine::cosine_scalar;
pub use simd_cosine::cosine_simd;
pub use ternary::CorrectionEntry;
pub use ternary::ParityTrit;
pub use ternary::Trit;
pub use ternary::Tryte3;
pub use ternary::Word6;
pub use ternary_vec::PackedTritVec;
pub use vsa::ReversibleVSAConfig;
pub use vsa::SparseVec;
pub use vsa::SparsityScaling;
pub use vsa::VsaConfig;
pub use vsa::VsaConfigSchema;
pub use vsa::DIM;
pub use coherency::CoherencyManager;
pub use coherency::CoherencyState;
pub use coherency::CoherencyStats;
pub use coherency::CoherentEngram;
pub use coherency::SyncProtocol;
pub use coherency::Tier;
pub use coherency::TierMask;
pub use coherency::TieredBlock;
pub use coherency::TieredCoherencyStats;
pub use coherency::TieredState;
pub use coherency::WritePolicy;
pub use vram_pool::VramHandle;
pub use vram_pool::VramPool;
pub use vram_pool::VramPoolConfig;
pub use vram_pool::VramPoolStats;
pub use virtual_memory::MemoryTier;
pub use virtual_memory::VMemHandle;
pub use virtual_memory::VirtualMemory;
pub use virtual_memory::VirtualMemoryConfig;
pub use virtual_memory::VirtualMemoryError;
pub use virtual_memory::VirtualMemoryStats;
pub use resonator::FactorizationResult;
pub use resonator::RecoveredFactor;
pub use resonator::Resonator;
pub use resonator::ResonatorConfig;
pub use resonator::ResonatorStats;
pub use resonator::SemanticInference;
pub use resonator::TrainingExample;
pub use resonator::TrainingResult;

Modules§

codebook
Codebook - Differential Encoding Base Model
coherency
Host-Device Coherency Protocol for GPU VRAM
dimensional
Dimensional Configuration - Variable Precision Hyperdimensional Substrate
phase_training
Deterministic Phase Training for Codebook Optimization
resonator
Resonator Networks for Learned Codebooks
reversible_encoding
Reversible Position-Aware VSA Encoding
simd_cosine
SIMD-accelerated cosine similarity for sparse ternary vectors
ternary
Foundational Balanced Ternary Primitives
ternary_vec
Packed ternary vector representation.
virtual_memory
Virtual Memory Abstraction for Tiered Storage
vram_pool
GPU VRAM Memory Pool for Persistent Engrams
vsa
Vector Symbolic Architecture (VSA) Implementation

Enums§

VsaError
Unified error type for VSA operations