1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//! # embedded-trace
//!
//! A [`Future`] tracing utility for embedded systems.
//!
//! This crate aims to provide tools to measure the execution time and debug
//! `async` tasks and [`Future`]s for `#![no_std]` projects.
//!
//! # How to use this library
//!
//! Two main traits are defined: [`TraceFuture`] and [`Instrument`].
//!
//! ## [`TraceFuture`]
//! [`TraceFuture`] extends the standard library's [`Future`] trait by adding
//! the [`trace_task`], [`trace_poll`] and [`trace_task_and_poll`] methods.
//! These methods each take one or more types implementing [`Instrument`]. The
//! three provided methods call [`on_enter`] and [`on_exit`] when entering the
//! specified spans, respectively. Consult the [`TraceFuture`] trait
//! documentation for more information.
//!
//! ## [`Instrument`]
//! [`Instrument`] represents the mechanism by which [`TraceFuture`]'s methods
//! will signal when a span is entered or exited. Implement this trait on your
//! own types. For instance, a simple mechanism may be to set a GPIO pin HIGH
//! when entering the span, and setting it LOW when exiting.
//!
//! ## Example use
//!
//! ```
//! use core::future::Future;
//! // `TraceFuture` must be in scope in order to use its methods.
//! use embedded_trace::{TraceFuture, Instrument};
//!
//! /// A simulated GPIO pin that prints to `stdout` instead of setting a a physical pin's electrical state
//! struct FakeGpio;
//!
//! impl Instrument for FakeGpio {
//! fn on_enter(&mut self) {
//! println!("HIGH");
//! }
//!
//! fn on_exit(&mut self) {
//! println!("LOW");
//! }
//! }
//!
//! async fn trace_a_future<F: Future>(future: F){
//! let mut gpio = FakeGpio;
//!
//! // Trace the task execution
//! future.trace_task(&mut gpio).await;
//!
//! // Expedted output:
//! // > HIGH
//! // > LOW
//! }
//! ```
//!
//! [`trace_task`]: TraceFuture::trace_task
//! [`trace_poll`]: TraceFuture::trace_poll
//! [`trace_task_and_poll`]: TraceFuture::trace_task_and_poll
//! [`on_enter`]: Instrument::on_enter
//! [`on_exit`]: Instrument::on_exit
#![no_std]
use core::{future::Future, pin::Pin, task::Poll};
/// Trait extending [`Future`]. Each method takes one or more [`Instrument`]
/// parameters which dictate the mechanism used to signal when a span is entered
/// and exited. Refer to each method's documentation for more information.
pub trait TraceFuture: Future
where
Self: Sized,
{
/// Trace a [`Future`]'s task execution. The underlying [`Instrument`]
/// calls [`on_enter`](Instrument::on_enter) when the future is first
/// polled, and calls [`on_exit`](Instrument::on_exit) when it completes
/// (returns [`Poll::Ready`]). This is useful for analyzing the total time
/// it takes for your future to complete (note that this is different from
/// the real CPU time the task consumes).
fn trace_task<I: Instrument>(self, instrument: &mut I) -> TraceTaskFuture<'_, Self, I> {
TraceTaskFuture {
fut: self,
instrument,
polled_once: false,
}
}
/// Trace a [`Future`] poll execution. The underlying [`Instrument`]
/// calls [`on_enter`](Instrument::on_enter) every time prior to the
/// underlying future being polled, and calls and calls
/// [`on_exit`](Instrument::on_exit) when it completes (returns
/// [`on_exit`](Instrument::on_exit) right after the [`poll`](Future::poll)
/// call completes, regardless of whether the underlying future completed or
/// not. This is useful for analyzing the time it takes to poll your future
/// (ie, actual CPU time used).
fn trace_poll<I: Instrument>(self, instrument: &mut I) -> TracePollFuture<'_, Self, I> {
TracePollFuture {
fut: self,
instrument,
}
}
/// The first underlying [`Instrument`] (`task_instrument`) acts exactly as
/// [`trace_task`](TraceFuture::trace_task), and the second underlying
/// [`Instrument`] (`poll_instrument`) acts exactly as
/// [`trace_poll`](TraceFuture::trace_poll).
fn trace_task_and_poll<'a, I1: Instrument, I2: Instrument>(
self,
task_instrument: &'a mut I1,
poll_instrument: &'a mut I2,
) -> TraceTaskAndPollFuture<'a, Self, I1, I2> {
TraceTaskAndPollFuture {
fut: self,
task_instrument,
poll_instrument,
polled_once: false,
}
}
}
impl<F: Future> TraceFuture for F {}
/// An [`Instrument`] is used to signal when a span is entered or exited.
pub trait Instrument {
/// This method is called when the span is entered.
fn on_enter(&mut self);
/// This method is called when the span is exited.
fn on_exit(&mut self);
}
pin_project_lite::pin_project! {
pub struct TraceTaskFuture<'a, F, I>
where
F: Future,
I: Instrument,
{
#[pin]
fut: F,
instrument: &'a mut I,
polled_once: bool
}
}
impl<'p, F, P> Future for TraceTaskFuture<'p, F, P>
where
F: Future,
P: Instrument,
{
type Output = F::Output;
fn poll(
self: Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
let this = self.project();
if !*this.polled_once {
this.instrument.on_enter();
}
*this.polled_once = true;
let poll_result = this.fut.poll(cx);
match poll_result {
Poll::Ready(c) => {
this.instrument.on_exit();
Poll::Ready(c)
}
Poll::Pending => Poll::Pending,
}
}
}
pin_project_lite::pin_project! {
pub struct TracePollFuture<'a, F, I>
where
F: Future,
I: Instrument,
{
#[pin]
fut: F,
instrument: &'a mut I,
}
}
impl<'p, F, I> Future for TracePollFuture<'p, F, I>
where
F: Future,
I: Instrument,
{
type Output = F::Output;
fn poll(
self: Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
let this = self.project();
this.instrument.on_enter();
let poll_result = this.fut.poll(cx);
this.instrument.on_exit();
match poll_result {
Poll::Ready(c) => Poll::Ready(c),
Poll::Pending => Poll::Pending,
}
}
}
pin_project_lite::pin_project! {
pub struct TraceTaskAndPollFuture<'a, F, T, P>
where
F: Future,
T: Instrument,
P: Instrument
{
#[pin]
fut: F,
task_instrument: &'a mut T,
poll_instrument: &'a mut P,
polled_once: bool,
}
}
impl<'p, F, I1, I2> Future for TraceTaskAndPollFuture<'p, F, I1, I2>
where
F: Future,
I1: Instrument,
I2: Instrument,
{
type Output = F::Output;
fn poll(
self: Pin<&mut Self>,
cx: &mut core::task::Context<'_>,
) -> core::task::Poll<Self::Output> {
let this = self.project();
if !*this.polled_once {
this.task_instrument.on_enter();
}
*this.polled_once = true;
this.poll_instrument.on_enter();
let poll_result = this.fut.poll(cx);
this.poll_instrument.on_exit();
match poll_result {
Poll::Ready(c) => {
this.task_instrument.on_exit();
Poll::Ready(c)
}
Poll::Pending => Poll::Pending,
}
}
}