embedded_test_macros/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// Copied from https://github.com/knurling-rs/defmt/blob/main/firmware/defmt-test/macros/src/lib.rs
extern crate proc_macro;

use darling::{ast::NestedMeta, FromMeta};
use proc_macro::TokenStream;
use quote::{format_ident, quote};
use syn::{parse, spanned::Spanned, Attribute, Item, ItemFn, ItemMod, ReturnType, Type};

/// Attribute to be placed on the test suite's module.
///
/// ## Arguments
/// - `default-timeout`: The default timeout in seconds for all tests in the suite. This can be overridden on a per-test basis. If not specified here or on a per-test basis, the default timeout is 60 seconds.
/// - `executor`: The custom executor to use for running async tests. This is only required if the features `embassy` and `external-executor` are enabled.
/// - `setup`: A function that will be called before running the tests. This can be used to setup logging or other global state.
///
/// ## Examples
///
/// Define a test suite with a single test:
///
/// ```rust,no_run
/// #[embedded_test::tests]
/// mod tests {
///     #[init]
///     fn init() {
///         // Initialize the hardware
///     }
///
///     #[test]
///     fn test() {
///        // Test the hardware
///     }
/// }
/// ```
///
/// Define a test suite and customize everything:
///
/// ```rust,no_run
/// #[embedded_test::tests(default_timeout = 10, executor = embassy::executor::Executor::new(), setup = rtt_target::rtt_init_log!())]
/// mod tests {
///     #[init]
///     fn init() {
///         // Initialize the hardware
///     }
///
///     #[test]
///     fn test() {
///         log::info("Start....")
///         // Test the hardware
///     }
///
///     #[test]
///     #[timeout(5)]
///     fn test2() {
///        // Test the hardware
///     }
/// }
/// ```
#[proc_macro_attribute]
pub fn tests(args: TokenStream, input: TokenStream) -> TokenStream {
    match tests_impl(args, input) {
        Ok(ts) => ts,
        Err(e) => e.to_compile_error().into(),
    }
}

fn tests_impl(args: TokenStream, input: TokenStream) -> parse::Result<TokenStream> {
    #[derive(Debug, FromMeta)]
    struct MacroArgs {
        executor: Option<syn::Expr>,
        default_timeout: Option<u32>,
        setup: Option<syn::Expr>,
    }

    let attr_args = match NestedMeta::parse_meta_list(args.into()) {
        Ok(v) => v,
        Err(e) => {
            return Ok(TokenStream::from(darling::Error::from(e).write_errors()));
        }
    };

    let macro_args = match MacroArgs::from_list(&attr_args) {
        Ok(v) => v,
        Err(e) => {
            return Ok(TokenStream::from(e.write_errors()));
        }
    };

    #[cfg(not(all(feature = "embassy", feature = "external-executor")))]
    if macro_args.executor.is_some() {
        return Err(parse::Error::new(
            proc_macro2::Span::call_site(),
            "`#[embedded_test::tests]` attribute doesn't take an executor unless the features `embassy` and `external-executor` are enabled",
        ));
    }

    let module: ItemMod = syn::parse(input)?;

    let items = if let Some(content) = module.content {
        content.1
    } else {
        return Err(parse::Error::new(
            module.span(),
            "module must be inline (e.g. `mod foo {}`)",
        ));
    };

    let mut init = None;
    let mut tests = vec![];
    let mut untouched_tokens = vec![];
    for item in items {
        match item {
            Item::Fn(mut f) => {
                let mut test_kind = None;
                let mut should_panic = false;
                let mut ignore = false;
                let mut timeout = None;

                f.attrs.retain(|attr| {
                    if attr.path().is_ident("init") {
                        test_kind = Some(Attr::Init);
                        false
                    } else if attr.path().is_ident("test") {
                        test_kind = Some(Attr::Test);
                        false
                    } else if attr.path().is_ident("should_panic") {
                        should_panic = true;
                        false
                    } else if attr.path().is_ident("ignore") {
                        ignore = true;
                        false
                    } else if attr.path().is_ident("timeout") {
                        timeout = Some(attr.clone());
                        false
                    } else {
                        true
                    }
                });

                let timeout = if let Some(attr) = timeout {
                    match attr.parse_args::<TimeoutAttribute>() {
                        Ok(TimeoutAttribute { value }) => Some(value),
                        Err(e) => {
                            return Err(parse::Error::new(
                                attr.span(),
                                format!("failed to parse `timeout` attribute. Must be of the form #[timeout(10)] where 10 is the timeout in seconds. Error: {}", e)
                            ));
                        }
                    }
                } else {
                    None
                };

                let attr = match test_kind {
                    Some(it) => it,
                    None => {
                        return Err(parse::Error::new(
                            f.span(),
                            "function requires `#[init]` or `#[test]` attribute",
                        ));
                    }
                };

                match attr {
                    Attr::Init => {
                        if init.is_some() {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "only a single `#[init]` function can be defined",
                            ));
                        }

                        if should_panic {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[should_panic]` is not allowed on the `#[init]` function",
                            ));
                        }

                        if ignore {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[ignore]` is not allowed on the `#[init]` function",
                            ));
                        }

                        if timeout.is_some() {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[timeout]` is not allowed on the `#[init]` function",
                            ));
                        }

                        if check_fn_sig(&f.sig).is_err() || !f.sig.inputs.is_empty() {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[init]` function must have signature `async fn() [-> Type]` (async/return type are optional)",
                            ));
                        }

                        #[cfg(not(feature = "embassy"))]
                        if f.sig.asyncness.is_some() {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[init]` function can only be async if an async executor is enabled via feature",
                            ));
                        }

                        let state = match &f.sig.output {
                            ReturnType::Default => None,
                            ReturnType::Type(.., ty) => Some(ty.clone()),
                        };
                        let asyncness = f.sig.asyncness.is_some();
                        init = Some(Init {
                            func: f,
                            state,
                            asyncness,
                        });
                    }

                    Attr::Test => {
                        if check_fn_sig(&f.sig).is_err() || f.sig.inputs.len() > 1 {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[test]` function must have signature `async fn(state: &mut Type)` (async/parameter are optional)",
                            ));
                        }

                        #[cfg(not(feature = "embassy"))]
                        if f.sig.asyncness.is_some() {
                            return Err(parse::Error::new(
                                f.sig.ident.span(),
                                "`#[test]` function can only be async if an async executor is enabled via feature",
                            ));
                        }

                        let input = if f.sig.inputs.len() == 1 {
                            let arg = &f.sig.inputs[0];

                            // NOTE we cannot check the argument type matches `init.state` at this
                            // point
                            if let Some(ty) = get_arg_type(arg).cloned() {
                                Some(Input { ty })
                            } else {
                                // was not `&mut T`
                                return Err(parse::Error::new(
                                    arg.span(),
                                    "parameter must be of the type that init() returns",
                                ));
                            }
                        } else {
                            None
                        };

                        let asyncness = f.sig.asyncness.is_some();
                        tests.push(Test {
                            cfgs: extract_cfgs(&f.attrs),
                            func: f,
                            asyncness,
                            input,
                            should_panic,
                            ignore,
                            timeout: timeout.or(macro_args.default_timeout),
                        });
                    }
                }
            }

            _ => {
                untouched_tokens.push(item);
            }
        }
    }

    let krate = format_ident!("embedded_test");
    let ident = module.ident;
    let mut state_ty = None;
    let (init_fn, init_expr, init_is_async) = if let Some(ref init) = init {
        let init_func = &init.func;
        let init_ident = &init.func.sig.ident;
        state_ty = init.state.clone();

        (
            Some(quote!(#init_func)),
            invoke(init_ident, vec![], init.asyncness),
            init.asyncness,
        )
    } else {
        (None, quote!(()), false)
    };

    let mut unit_test_calls = vec![];
    let mut test_function_invokers = vec![];

    for test in &tests {
        let should_panic = test.should_panic;
        let ignore = test.ignore;
        let ident = &test.func.sig.ident;
        let ident_invoker = format_ident!("__{}_invoker", ident);
        let span = test.func.sig.ident.span();

        let timeout = match test.timeout {
            Some(timeout) => quote!(Some(#timeout)),
            None => quote!(None),
        };

        //TODO: if init func returns something, all functions must accept it as input?
        let mut args = vec![];

        if let Some(input) = test.input.as_ref() {
            if let Some(state) = &state_ty {
                if input.ty != **state {
                    return Err(parse::Error::new(
                        input.ty.span(),
                        format!(
                            "this type must match `#[init]`s return type: {}",
                            type_ident(state)
                        ),
                    ));
                }
                args.push(quote!(state));
            } else {
                return Err(parse::Error::new(
                    span,
                    "no state was initialized by `#[init]`; signature must be `fn()`",
                ));
            }
        }

        let run_call = invoke(ident, args, test.asyncness);

        let init_run_and_check = quote!(
            {
                let outcome;
                {
                    let state = #init_expr; // either init() or init().await or ()
                    outcome = #run_call; // either test(state), test(state).await, test(), or test().await
                }
                #krate::export::check_outcome(outcome);
            }
        );

        // The closure that will be called, if the test should be runned.
        // This closure has the signature () -> !, so it will never return.
        // The closure will signal the test result via semihosting exit/abort instead
        let entrypoint = if test.asyncness || init_is_async {
            // We need a utility function, so that embassy can create a task for us
            let cfgs = &test.cfgs;
            test_function_invokers.push(quote!(
                  #(#cfgs)*
                  #[#krate::export::task]
                  async fn #ident_invoker() {
                      #init_run_and_check
                  }
            ));

            let executor = if let Some(executor) = &macro_args.executor {
                quote! {
                    #executor
                }
            } else {
                quote! {
                    #krate::export::Executor::new()
                }
            };

            quote!(|| {
                let mut executor = #executor;
                let executor = unsafe { __make_static(&mut executor) };
                executor.run(|spawner| {
                    spawner.must_spawn(#ident_invoker());
                })
            })
        } else {
            quote!(|| {
                #init_run_and_check
            })
        };

        unit_test_calls.push(quote! {
            const FULLY_QUALIFIED_FN_NAME: &str = concat!(module_path!(), "::", stringify!(#ident));
            test_funcs.push(#krate::export::Test{name: FULLY_QUALIFIED_FN_NAME, ignored: #ignore, should_panic: #should_panic, function: #entrypoint, timeout: #timeout}).unwrap();
        });
    }

    let test_functions = tests.iter().map(|test| &test.func);
    let test_cfgs = tests.iter().map(|test| &test.cfgs);
    let test_count = {
        let test_cfgs = test_cfgs.clone();
        quote!(
            {
                let mut counter = 0;
                #(
                    #(#test_cfgs)*
                    { counter += 1; }
                )*
                counter
            }
        )
    };

    let test_names_strlen = {
        let test_cfgs = test_cfgs.clone();
        let test_names = tests.iter().map(|test| test.func.sig.ident.clone());
        quote!(
            {
                // The idea of this code is to calculate the overall string length of all test names,
                // so that inside `run_tests` we can allocate a json buffer of the right size,
                // without doing a heap allocation (requiring a global allocator)
                let mut counter = 0;
                #(
                    #(#test_cfgs)*
                    {
                        const FULLY_QUALIFIED_FN_NAME: &str = concat!(module_path!(), "::", stringify!(#test_names));
                        counter += FULLY_QUALIFIED_FN_NAME.len();
                    }
                )*
                counter
            }
        )
    };
    let setup = macro_args.setup;

    Ok(quote!(
    #[cfg(test)]
    mod #ident {
        #(#untouched_tokens)*

        // Used by probe-rs to detect that the binary runs embedded-test
        #[used]
        #[no_mangle]
        #[link_section = ".embedded_test.meta"]
        static EMBEDDED_TEST_VERSION: usize = 0;

        unsafe fn __make_static<T>(t: &mut T) -> &'static mut T {
            ::core::mem::transmute(t)
        }

        #[export_name = "main"]
        unsafe extern "C" fn __embedded_test_entry() -> ! {
            // The linker file will redirect this call to the function below.
            // This trick ensures that we get a compile error, if the linker file was not added to the rustflags.
            #krate::export::ensure_linker_file_was_added_to_rustflags();
        }

        #[no_mangle]
        unsafe extern "C" fn __embedded_test_start() -> ! {
            {
                #setup
            }

            const TEST_COUNT : usize = #test_count;
            const TEST_NAMES_STRLEN : usize = #test_names_strlen;
            let mut test_funcs: #krate::export::Vec<#krate::export::Test, TEST_COUNT> = #krate::export::Vec::new();

            #(
                #(#test_cfgs)*
                {
                    #unit_test_calls // pushes Test to test_funcs
                }
            )*

            const JSON_SIZE_TOTAL : usize =  #krate::export::JSON_SIZE_HEADER + TEST_NAMES_STRLEN
                + #krate::export::JSON_SIZE_PER_TEST_WITHOUT_TESTNAME * TEST_COUNT;

            #krate::export::run_tests::<JSON_SIZE_TOTAL>(&mut test_funcs[..]);
        }

        #init_fn

        #(
            #test_functions
        )*

        #(
            #test_function_invokers
        )*
    })
        .into())
}

#[derive(Clone, Copy)]
enum Attr {
    Init,
    Test,
}

struct Init {
    func: ItemFn,
    state: Option<Box<Type>>,
    asyncness: bool,
}

struct Test {
    func: ItemFn,
    cfgs: Vec<Attribute>,
    input: Option<Input>,
    should_panic: bool,
    ignore: bool,
    asyncness: bool,
    timeout: Option<u32>,
}

struct Input {
    ty: Type,
}

struct TimeoutAttribute {
    value: u32,
}

impl syn::parse::Parse for TimeoutAttribute {
    fn parse(input: syn::parse::ParseStream) -> syn::Result<Self> {
        let value_lit: syn::LitInt = input.parse()?;
        let value = value_lit.base10_parse::<u32>()?;

        Ok(TimeoutAttribute { value })
    }
}

// NOTE doesn't check the parameters or the return type
fn check_fn_sig(sig: &syn::Signature) -> Result<(), ()> {
    if sig.constness.is_none()
        && sig.unsafety.is_none()
        && sig.abi.is_none()
        && sig.generics.params.is_empty()
        && sig.generics.where_clause.is_none()
        && sig.variadic.is_none()
    {
        Ok(())
    } else {
        Err(())
    }
}

fn get_arg_type(arg: &syn::FnArg) -> Option<&Type> {
    if let syn::FnArg::Typed(pat) = arg {
        match &*pat.ty {
            syn::Type::Reference(_) => None,
            _ => Some(&pat.ty),
        }
    } else {
        None
    }
}

fn extract_cfgs(attrs: &[Attribute]) -> Vec<Attribute> {
    let mut cfgs = vec![];

    for attr in attrs {
        if attr.path().is_ident("cfg") {
            cfgs.push(attr.clone());
        }
    }

    cfgs
}

fn type_ident(ty: impl AsRef<syn::Type>) -> String {
    let mut ident = String::new();
    let ty = ty.as_ref();
    let ty = format!("{}", quote!(#ty));
    ty.split_whitespace().for_each(|t| ident.push_str(t));
    ident
}

fn invoke(
    func: &proc_macro2::Ident,
    args: Vec<proc_macro2::TokenStream>,
    asyncness: bool,
) -> proc_macro2::TokenStream {
    if asyncness {
        quote!(#func(#(#args),*).await)
    } else {
        quote!(#func(#(#args),*))
    }
}