1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
//! The SD/MMC Protocol
//!
//! Implements the SD/MMC protocol on some generic SPI interface.
//!
//! This is currently optimised for readability and debugability, not
//! performance.
pub mod proto;
use crate::{trace, Block, BlockCount, BlockDevice, BlockIdx};
use core::cell::RefCell;
use proto::*;
// ****************************************************************************
// Imports
// ****************************************************************************
use crate::{debug, warn};
// ****************************************************************************
// Types and Implementations
// ****************************************************************************
/// A dummy "CS pin" that does nothing when set high or low.
///
/// Should be used when constructing an [`SpiDevice`] implementation for use with [`SdCard`].
///
/// Let the [`SpiDevice`] use this dummy CS pin that does not actually do anything, and pass the
/// card's real CS pin to [`SdCard`]'s constructor. This allows the driver to have more
/// fine-grained control of how the CS pin is managed than is allowed by default using the
/// [`SpiDevice`] trait, which is needed to implement the SD/MMC SPI communication spec correctly.
///
/// If you're not sure how to get a [`SpiDevice`], you may use one of the implementations
/// in the [`embedded-hal-bus`] crate, providing a wrapped version of your platform's HAL-provided
/// [`SpiBus`] and [`DelayNs`] as well as our [`DummyCsPin`] in the constructor.
///
/// [`SpiDevice`]: embedded_hal::spi::SpiDevice
/// [`SpiBus`]: embedded_hal::spi::SpiBus
/// [`DelayNs`]: embedded_hal::delay::DelayNs
/// [`embedded-hal-bus`]: https://docs.rs/embedded-hal-bus
pub struct DummyCsPin;
impl embedded_hal::digital::ErrorType for DummyCsPin {
type Error = core::convert::Infallible;
}
impl embedded_hal::digital::OutputPin for DummyCsPin {
#[inline(always)]
fn set_low(&mut self) -> Result<(), Self::Error> {
Ok(())
}
#[inline(always)]
fn set_high(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
/// Represents an SD Card on an SPI bus.
///
/// Built from an [`SpiDevice`] implementation and a Chip Select pin.
/// Unfortunately, We need control of the chip select pin separately from the [`SpiDevice`]
/// implementation so we can clock out some bytes without Chip Select asserted
/// (which is necessary to make the SD card actually release the Spi bus after performing
/// operations on it, according to the spec). To support this, we provide [`DummyCsPin`]
/// which should be provided to your chosen [`SpiDevice`] implementation rather than the card's
/// actual CS pin. Then provide the actual CS pin to [`SdCard`]'s constructor.
///
/// All the APIs take `&self` - mutability is handled using an inner `RefCell`.
///
/// [`SpiDevice`]: embedded_hal::spi::SpiDevice
pub struct SdCard<SPI, CS, DELAYER>
where
SPI: embedded_hal::spi::SpiDevice<u8>,
CS: embedded_hal::digital::OutputPin,
DELAYER: embedded_hal::delay::DelayNs,
{
inner: RefCell<SdCardInner<SPI, CS, DELAYER>>,
}
impl<SPI, CS, DELAYER> SdCard<SPI, CS, DELAYER>
where
SPI: embedded_hal::spi::SpiDevice<u8>,
CS: embedded_hal::digital::OutputPin,
DELAYER: embedded_hal::delay::DelayNs,
{
/// Create a new SD/MMC Card driver using a raw SPI interface.
///
/// See the docs of the [`SdCard`] struct for more information about
/// how to construct the needed `SPI` and `CS` types.
///
/// The card will not be initialised at this time. Initialisation is
/// deferred until a method is called on the object.
///
/// Uses the default options.
pub fn new(spi: SPI, cs: CS, delayer: DELAYER) -> SdCard<SPI, CS, DELAYER> {
Self::new_with_options(spi, cs, delayer, AcquireOpts::default())
}
/// Construct a new SD/MMC Card driver, using a raw SPI interface and the given options.
///
/// See the docs of the [`SdCard`] struct for more information about
/// how to construct the needed `SPI` and `CS` types.
///
/// The card will not be initialised at this time. Initialisation is
/// deferred until a method is called on the object.
pub fn new_with_options(
spi: SPI,
cs: CS,
delayer: DELAYER,
options: AcquireOpts,
) -> SdCard<SPI, CS, DELAYER> {
SdCard {
inner: RefCell::new(SdCardInner {
spi,
cs,
delayer,
card_type: None,
options,
}),
}
}
/// Get a temporary borrow on the underlying SPI device.
///
/// The given closure will be called exactly once, and will be passed a
/// mutable reference to the underlying SPI object.
///
/// Useful if you need to re-clock the SPI, but does not perform card
/// initialisation.
pub fn spi<T, F>(&self, func: F) -> T
where
F: FnOnce(&mut SPI) -> T,
{
let mut inner = self.inner.borrow_mut();
func(&mut inner.spi)
}
/// Return the usable size of this SD card in bytes.
///
/// This will trigger card (re-)initialisation.
pub fn num_bytes(&self) -> Result<u64, Error> {
let mut inner = self.inner.borrow_mut();
inner.check_init()?;
inner.num_bytes()
}
/// Can this card erase single blocks?
///
/// This will trigger card (re-)initialisation.
pub fn erase_single_block_enabled(&self) -> Result<bool, Error> {
let mut inner = self.inner.borrow_mut();
inner.check_init()?;
inner.erase_single_block_enabled()
}
/// Mark the card as requiring a reset.
///
/// The next operation will assume the card has been freshly inserted.
pub fn mark_card_uninit(&self) {
let mut inner = self.inner.borrow_mut();
inner.card_type = None;
}
/// Get the card type.
///
/// This will trigger card (re-)initialisation.
pub fn get_card_type(&self) -> Option<CardType> {
let mut inner = self.inner.borrow_mut();
inner.check_init().ok()?;
inner.card_type
}
/// Tell the driver the card has been initialised.
///
/// This is here in case you were previously using the SD Card, and then a
/// previous instance of this object got destroyed but you know for certain
/// the SD Card remained powered up and initialised, and you'd just like to
/// read/write to/from the card again without going through the
/// initialisation sequence again.
///
/// # Safety
///
/// Only do this if the SD Card has actually been initialised. That is, if
/// you have been through the card initialisation sequence as specified in
/// the SD Card Specification by sending each appropriate command in turn,
/// either manually or using another variable of this [`SdCard`]. The card
/// must also be of the indicated type. Failure to uphold this will cause
/// data corruption.
pub unsafe fn mark_card_as_init(&self, card_type: CardType) {
let mut inner = self.inner.borrow_mut();
inner.card_type = Some(card_type);
}
}
impl<SPI, CS, DELAYER> BlockDevice for SdCard<SPI, CS, DELAYER>
where
SPI: embedded_hal::spi::SpiDevice<u8>,
CS: embedded_hal::digital::OutputPin,
DELAYER: embedded_hal::delay::DelayNs,
{
type Error = Error;
/// Read one or more blocks, starting at the given block index.
///
/// This will trigger card (re-)initialisation.
fn read(
&self,
blocks: &mut [Block],
start_block_idx: BlockIdx,
_reason: &str,
) -> Result<(), Self::Error> {
let mut inner = self.inner.borrow_mut();
debug!(
"Read {} blocks @ {} for {}",
blocks.len(),
start_block_idx.0,
_reason
);
inner.check_init()?;
inner.read(blocks, start_block_idx)
}
/// Write one or more blocks, starting at the given block index.
///
/// This will trigger card (re-)initialisation.
fn write(&self, blocks: &[Block], start_block_idx: BlockIdx) -> Result<(), Self::Error> {
let mut inner = self.inner.borrow_mut();
debug!("Writing {} blocks @ {}", blocks.len(), start_block_idx.0);
inner.check_init()?;
inner.write(blocks, start_block_idx)
}
/// Determine how many blocks this device can hold.
///
/// This will trigger card (re-)initialisation.
fn num_blocks(&self) -> Result<BlockCount, Self::Error> {
let mut inner = self.inner.borrow_mut();
inner.check_init()?;
inner.num_blocks()
}
}
/// Represents an SD Card on an SPI bus.
///
/// All the APIs required `&mut self`.
struct SdCardInner<SPI, CS, DELAYER>
where
SPI: embedded_hal::spi::SpiDevice<u8>,
CS: embedded_hal::digital::OutputPin,
DELAYER: embedded_hal::delay::DelayNs,
{
spi: SPI,
cs: CS,
delayer: DELAYER,
card_type: Option<CardType>,
options: AcquireOpts,
}
impl<SPI, CS, DELAYER> SdCardInner<SPI, CS, DELAYER>
where
SPI: embedded_hal::spi::SpiDevice<u8>,
CS: embedded_hal::digital::OutputPin,
DELAYER: embedded_hal::delay::DelayNs,
{
/// Read one or more blocks, starting at the given block index.
fn read(&mut self, blocks: &mut [Block], start_block_idx: BlockIdx) -> Result<(), Error> {
let start_idx = match self.card_type {
Some(CardType::SD1 | CardType::SD2) => start_block_idx.0 * 512,
Some(CardType::SDHC) => start_block_idx.0,
None => return Err(Error::CardNotFound),
};
self.with_chip_select(|s| {
if blocks.len() == 1 {
// Start a single-block read
s.card_command(CMD17, start_idx)?;
s.read_data(&mut blocks[0].contents)?;
} else {
// Start a multi-block read
s.card_command(CMD18, start_idx)?;
for block in blocks.iter_mut() {
s.read_data(&mut block.contents)?;
}
// Stop the read
s.card_command(CMD12, 0)?;
}
Ok(())
})
}
/// Write one or more blocks, starting at the given block index.
fn write(&mut self, blocks: &[Block], start_block_idx: BlockIdx) -> Result<(), Error> {
let start_idx = match self.card_type {
Some(CardType::SD1 | CardType::SD2) => start_block_idx.0 * 512,
Some(CardType::SDHC) => start_block_idx.0,
None => return Err(Error::CardNotFound),
};
self.with_chip_select(|s| {
if blocks.len() == 1 {
// Start a single-block write
s.card_command(CMD24, start_idx)?;
s.write_data(DATA_START_BLOCK, &blocks[0].contents)?;
s.wait_not_busy(Delay::new_write())?;
if s.card_command(CMD13, 0)? != 0x00 {
return Err(Error::WriteError);
}
if s.read_byte()? != 0x00 {
return Err(Error::WriteError);
}
} else {
// > It is recommended using this command preceding CMD25, some of the cards will be faster for Multiple
// > Write Blocks operation. Note that the host should send ACMD23 just before WRITE command if the host
// > wants to use the pre-erased feature
s.card_acmd(ACMD23, blocks.len() as u32)?;
// wait for card to be ready before sending the next command
s.wait_not_busy(Delay::new_write())?;
// Start a multi-block write
s.card_command(CMD25, start_idx)?;
for block in blocks.iter() {
s.wait_not_busy(Delay::new_write())?;
s.write_data(WRITE_MULTIPLE_TOKEN, &block.contents)?;
}
// Stop the write
s.wait_not_busy(Delay::new_write())?;
s.write_byte(STOP_TRAN_TOKEN)?;
}
Ok(())
})
}
/// Determine how many blocks this device can hold.
fn num_blocks(&mut self) -> Result<BlockCount, Error> {
let num_blocks = self.with_chip_select(|s| {
let csd = s.read_csd()?;
debug!("CSD: {:?}", csd);
match csd {
Csd::V1(ref contents) => Ok(contents.card_capacity_blocks()),
Csd::V2(ref contents) => Ok(contents.card_capacity_blocks()),
}
})?;
Ok(BlockCount(num_blocks))
}
/// Return the usable size of this SD card in bytes.
fn num_bytes(&mut self) -> Result<u64, Error> {
self.with_chip_select(|s| {
let csd = s.read_csd()?;
debug!("CSD: {:?}", csd);
match csd {
Csd::V1(ref contents) => Ok(contents.card_capacity_bytes()),
Csd::V2(ref contents) => Ok(contents.card_capacity_bytes()),
}
})
}
/// Can this card erase single blocks?
pub fn erase_single_block_enabled(&mut self) -> Result<bool, Error> {
self.with_chip_select(|s| {
let csd = s.read_csd()?;
match csd {
Csd::V1(ref contents) => Ok(contents.erase_single_block_enabled()),
Csd::V2(ref contents) => Ok(contents.erase_single_block_enabled()),
}
})
}
/// Read the 'card specific data' block.
fn read_csd(&mut self) -> Result<Csd, Error> {
match self.card_type {
Some(CardType::SD1) => {
let mut csd = CsdV1::new();
if self.card_command(CMD9, 0)? != 0 {
return Err(Error::RegisterReadError);
}
self.read_data(&mut csd.data)?;
Ok(Csd::V1(csd))
}
Some(CardType::SD2 | CardType::SDHC) => {
let mut csd = CsdV2::new();
if self.card_command(CMD9, 0)? != 0 {
return Err(Error::RegisterReadError);
}
self.read_data(&mut csd.data)?;
Ok(Csd::V2(csd))
}
None => Err(Error::CardNotFound),
}
}
/// Read an arbitrary number of bytes from the card using the SD Card
/// protocol and an optional CRC. Always fills the given buffer, so make
/// sure it's the right size.
fn read_data(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// Get first non-FF byte.
let mut delay = Delay::new_read();
let status = loop {
let s = self.read_byte()?;
if s != 0xFF {
break s;
}
delay.delay(&mut self.delayer, Error::TimeoutReadBuffer)?;
};
if status != DATA_START_BLOCK {
return Err(Error::ReadError);
}
for b in buffer.iter_mut() {
*b = 0xFF;
}
self.transfer_bytes(buffer)?;
// These two bytes are always sent. They are either a valid CRC, or
// junk, depending on whether CRC mode was enabled.
let mut crc_bytes = [0xFF; 2];
self.transfer_bytes(&mut crc_bytes)?;
if self.options.use_crc {
let crc = u16::from_be_bytes(crc_bytes);
let calc_crc = crc16(buffer);
if crc != calc_crc {
return Err(Error::CrcError(crc, calc_crc));
}
}
Ok(())
}
/// Write an arbitrary number of bytes to the card using the SD protocol and
/// an optional CRC.
fn write_data(&mut self, token: u8, buffer: &[u8]) -> Result<(), Error> {
self.write_byte(token)?;
self.write_bytes(buffer)?;
let crc_bytes = if self.options.use_crc {
crc16(buffer).to_be_bytes()
} else {
[0xFF, 0xFF]
};
// These two bytes are always sent. They are either a valid CRC, or
// junk, depending on whether CRC mode was enabled.
self.write_bytes(&crc_bytes)?;
let status = self.read_byte()?;
if (status & DATA_RES_MASK) != DATA_RES_ACCEPTED {
Err(Error::WriteError)
} else {
Ok(())
}
}
fn cs_high(&mut self) -> Result<(), Error> {
self.cs.set_high().map_err(|_| Error::GpioError)
}
fn cs_low(&mut self) -> Result<(), Error> {
self.cs.set_low().map_err(|_| Error::GpioError)
}
/// Check the card is initialised.
fn check_init(&mut self) -> Result<(), Error> {
if self.card_type.is_none() {
// If we don't know what the card type is, try and initialise the
// card. This will tell us what type of card it is.
self.acquire()
} else {
Ok(())
}
}
/// Initializes the card into a known state (or at least tries to).
fn acquire(&mut self) -> Result<(), Error> {
debug!("acquiring card with opts: {:?}", self.options);
let f = |s: &mut Self| {
// Assume it hasn't worked
let mut card_type;
trace!("Reset card..");
// Supply minimum of 74 clock cycles without CS asserted.
s.cs_high()?;
s.write_bytes(&[0xFF; 10])?;
// Assert CS
s.cs_low()?;
// Enter SPI mode.
let mut delay = Delay::new(s.options.acquire_retries);
for _attempts in 1.. {
trace!("Enter SPI mode, attempt: {}..", _attempts);
match s.card_command(CMD0, 0) {
Err(Error::TimeoutCommand(0)) => {
// Try again?
warn!("Timed out, trying again..");
// Try flushing the card as done here: https://github.com/greiman/SdFat/blob/master/src/SdCard/SdSpiCard.cpp#L170,
// https://github.com/rust-embedded-community/embedded-sdmmc-rs/pull/65#issuecomment-1270709448
for _ in 0..0xFF {
s.write_byte(0xFF)?;
}
}
Err(e) => {
return Err(e);
}
Ok(R1_IDLE_STATE) => {
break;
}
Ok(_r) => {
// Try again
warn!("Got response: {:x}, trying again..", _r);
}
}
delay.delay(&mut s.delayer, Error::CardNotFound)?;
}
// Enable CRC
debug!("Enable CRC: {}", s.options.use_crc);
// "The SPI interface is initialized in the CRC OFF mode in default"
// -- SD Part 1 Physical Layer Specification v9.00, Section 7.2.2 Bus Transfer Protection
if s.options.use_crc && s.card_command(CMD59, 1)? != R1_IDLE_STATE {
return Err(Error::CantEnableCRC);
}
// Check card version
let mut delay = Delay::new_command();
let arg = loop {
if s.card_command(CMD8, 0x1AA)? == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE) {
card_type = CardType::SD1;
break 0;
}
let mut buffer = [0xFF; 4];
s.transfer_bytes(&mut buffer)?;
let status = buffer[3];
if status == 0xAA {
card_type = CardType::SD2;
break 0x4000_0000;
}
delay.delay(&mut s.delayer, Error::TimeoutCommand(CMD8))?;
};
let mut delay = Delay::new_command();
while s.card_acmd(ACMD41, arg)? != R1_READY_STATE {
delay.delay(&mut s.delayer, Error::TimeoutACommand(ACMD41))?;
}
if card_type == CardType::SD2 {
if s.card_command(CMD58, 0)? != 0 {
return Err(Error::Cmd58Error);
}
let mut buffer = [0xFF; 4];
s.transfer_bytes(&mut buffer)?;
if (buffer[0] & 0xC0) == 0xC0 {
card_type = CardType::SDHC;
}
// Ignore the other three bytes
}
debug!("Card version: {:?}", card_type);
s.card_type = Some(card_type);
Ok(())
};
let result = f(self);
self.cs_high()?;
let _ = self.read_byte();
result
}
/// Perform a function that might error with the chipselect low.
/// Always releases the chipselect, even if the function errors.
fn with_chip_select<F, T>(&mut self, func: F) -> Result<T, Error>
where
F: FnOnce(&mut Self) -> Result<T, Error>,
{
self.cs_low()?;
let result = func(self);
self.cs_high()?;
result
}
/// Perform an application-specific command.
fn card_acmd(&mut self, command: u8, arg: u32) -> Result<u8, Error> {
self.card_command(CMD55, 0)?;
self.card_command(command, arg)
}
/// Perform a command.
fn card_command(&mut self, command: u8, arg: u32) -> Result<u8, Error> {
if command != CMD0 && command != CMD12 {
self.wait_not_busy(Delay::new_command())?;
}
let mut buf = [
0x40 | command,
(arg >> 24) as u8,
(arg >> 16) as u8,
(arg >> 8) as u8,
arg as u8,
0,
];
buf[5] = crc7(&buf[0..5]);
self.write_bytes(&buf)?;
// skip stuff byte for stop read
if command == CMD12 {
let _result = self.read_byte()?;
}
let mut delay = Delay::new_command();
loop {
let result = self.read_byte()?;
if (result & 0x80) == ERROR_OK {
return Ok(result);
}
delay.delay(&mut self.delayer, Error::TimeoutCommand(command))?;
}
}
/// Receive a byte from the SPI bus by clocking out an 0xFF byte.
fn read_byte(&mut self) -> Result<u8, Error> {
self.transfer_byte(0xFF)
}
/// Send a byte over the SPI bus and ignore what comes back.
fn write_byte(&mut self, out: u8) -> Result<(), Error> {
let _ = self.transfer_byte(out)?;
Ok(())
}
/// Send one byte and receive one byte over the SPI bus.
fn transfer_byte(&mut self, out: u8) -> Result<u8, Error> {
let mut read_buf = [0u8; 1];
self.spi
.transfer(&mut read_buf, &[out])
.map_err(|_| Error::Transport)?;
Ok(read_buf[0])
}
/// Send multiple bytes and ignore what comes back over the SPI bus.
fn write_bytes(&mut self, out: &[u8]) -> Result<(), Error> {
self.spi.write(out).map_err(|_e| Error::Transport)?;
Ok(())
}
/// Send multiple bytes and replace them with what comes back over the SPI bus.
fn transfer_bytes(&mut self, in_out: &mut [u8]) -> Result<(), Error> {
self.spi
.transfer_in_place(in_out)
.map_err(|_e| Error::Transport)?;
Ok(())
}
/// Spin until the card returns 0xFF, or we spin too many times and
/// timeout.
fn wait_not_busy(&mut self, mut delay: Delay) -> Result<(), Error> {
loop {
let s = self.read_byte()?;
if s == 0xFF {
break;
}
delay.delay(&mut self.delayer, Error::TimeoutWaitNotBusy)?;
}
Ok(())
}
}
/// Options for acquiring the card.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug)]
pub struct AcquireOpts {
/// Set to true to enable CRC checking on reading/writing blocks of data.
///
/// Set to false to disable the CRC. Some cards don't support CRC correctly
/// and this option may be useful in that instance.
///
/// On by default because without it you might get silent data corruption on
/// your card.
pub use_crc: bool,
/// Sets the number of times we will retry to acquire the card before giving up and returning
/// `Err(Error::CardNotFound)`. By default, card acquisition will be retried 50 times.
pub acquire_retries: u32,
}
impl Default for AcquireOpts {
fn default() -> Self {
AcquireOpts {
use_crc: true,
acquire_retries: 50,
}
}
}
/// The possible errors this crate can generate.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone)]
pub enum Error {
/// We got an error from the SPI peripheral
Transport,
/// We failed to enable CRC checking on the SD card
CantEnableCRC,
/// We didn't get a response when reading data from the card
TimeoutReadBuffer,
/// We didn't get a response when waiting for the card to not be busy
TimeoutWaitNotBusy,
/// We didn't get a response when executing this command
TimeoutCommand(u8),
/// We didn't get a response when executing this application-specific command
TimeoutACommand(u8),
/// We got a bad response from Command 58
Cmd58Error,
/// We failed to read the Card Specific Data register
RegisterReadError,
/// We got a CRC mismatch (card gave us, we calculated)
CrcError(u16, u16),
/// Error reading from the card
ReadError,
/// Error writing to the card
WriteError,
/// Can't perform this operation with the card in this state
BadState,
/// Couldn't find the card
CardNotFound,
/// Couldn't set a GPIO pin
GpioError,
}
/// The different types of card we support.
#[cfg_attr(feature = "defmt-log", derive(defmt::Format))]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum CardType {
/// An standard-capacity SD Card supporting v1.x of the standard.
///
/// Uses byte-addressing internally, so limited to 2GiB in size.
SD1,
/// An standard-capacity SD Card supporting v2.x of the standard.
///
/// Uses byte-addressing internally, so limited to 2GiB in size.
SD2,
/// An high-capacity 'SDHC' Card.
///
/// Uses block-addressing internally to support capacities above 2GiB.
SDHC,
}
/// This an object you can use to busy-wait with a timeout.
///
/// Will let you call `delay` up to `max_retries` times before `delay` returns
/// an error.
struct Delay {
retries_left: u32,
}
impl Delay {
/// The default number of retries for a read operation.
///
/// At ~10us each this is ~100ms.
///
/// See `Part1_Physical_Layer_Simplified_Specification_Ver9.00-1.pdf` Section 4.6.2.1
pub const DEFAULT_READ_RETRIES: u32 = 10_000;
/// The default number of retries for a write operation.
///
/// At ~10us each this is ~500ms.
///
/// See `Part1_Physical_Layer_Simplified_Specification_Ver9.00-1.pdf` Section 4.6.2.2
pub const DEFAULT_WRITE_RETRIES: u32 = 50_000;
/// The default number of retries for a control command.
///
/// At ~10us each this is ~100ms.
///
/// No value is given in the specification, so we pick the same as the read timeout.
pub const DEFAULT_COMMAND_RETRIES: u32 = 10_000;
/// Create a new Delay object with the given maximum number of retries.
fn new(max_retries: u32) -> Delay {
Delay {
retries_left: max_retries,
}
}
/// Create a new Delay object with the maximum number of retries for a read operation.
fn new_read() -> Delay {
Delay::new(Self::DEFAULT_READ_RETRIES)
}
/// Create a new Delay object with the maximum number of retries for a write operation.
fn new_write() -> Delay {
Delay::new(Self::DEFAULT_WRITE_RETRIES)
}
/// Create a new Delay object with the maximum number of retries for a command operation.
fn new_command() -> Delay {
Delay::new(Self::DEFAULT_COMMAND_RETRIES)
}
/// Wait for a while.
///
/// Checks the retry counter first, and if we hit the max retry limit, the
/// value `err` is returned. Otherwise we wait for 10us and then return
/// `Ok(())`.
fn delay<T>(&mut self, delayer: &mut T, err: Error) -> Result<(), Error>
where
T: embedded_hal::delay::DelayNs,
{
if self.retries_left == 0 {
Err(err)
} else {
delayer.delay_us(10);
self.retries_left -= 1;
Ok(())
}
}
}
// ****************************************************************************
//
// End Of File
//
// ****************************************************************************