1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use embedded_time::{
clock::Error,
duration::{Microseconds, Milliseconds},
Clock,
};
pub struct Task<T> {
f: fn(State<'_, T>),
hz: f32,
max_time_micros: u16,
priority: u8,
last_run: u16,
}
impl<T> Task<T> {
pub fn new(f: fn(State<'_, T>), hz: f32, max_time_micros: u16, priority: u8) -> Self {
Self {
f,
hz,
max_time_micros,
priority,
last_run: 0,
}
}
pub fn fast(f: fn(State<'_, T>)) -> Self {
Self::new(f, 0., 0, 0)
}
}
pub struct State<'a, T> {
pub controller: &'a mut T,
pub now: u32,
}
pub struct Scheduler<C, T, const A: usize, const B: usize> {
common_tasks: [Task<T>; A],
vehicle_tasks: [Task<T>; B],
clock: C,
num_tasks: u8,
tick_counter: u16,
loop_rate_hz: i16,
loop_period_us: u16,
task_time_allowed: u32,
max_task_slowdown: u8,
task_not_achieved: u32,
task_all_achieved: u32,
loop_timer_start_us: u32,
last_loop_time_s: f32,
extra_loop_us: u32,
}
impl<C, T, const A: usize, const B: usize> Scheduler<C, T, A, B>
where
C: Clock<T = u32>,
{
pub fn new(
common_tasks: [Task<T>; A],
vehicle_tasks: [Task<T>; B],
clock: C,
loop_rate_hz: i16,
) -> Self {
let loop_period_us = (1000000 / loop_rate_hz as i32) as _;
Self {
num_tasks: (common_tasks.len() + vehicle_tasks.len()) as _,
common_tasks,
vehicle_tasks,
clock,
tick_counter: 0,
loop_rate_hz,
loop_period_us,
task_time_allowed: loop_period_us as _,
max_task_slowdown: 4,
task_not_achieved: 0,
task_all_achieved: 0,
loop_timer_start_us: 0,
last_loop_time_s: 0.,
extra_loop_us: 0,
}
}
pub fn run(&mut self, controller: &mut T) -> Result<(), Error> {
let sample_time_us = Microseconds::try_from(self.clock.try_now()?.duration_since_epoch())
.unwrap()
.0;
if self.loop_timer_start_us == 0 {
self.loop_timer_start_us = sample_time_us;
self.last_loop_time_s = 1. / self.loop_rate_hz as f32;
} else {
self.last_loop_time_s = (sample_time_us - self.loop_timer_start_us) as f32 * 1.0e-6;
}
if self.tick_counter == u16::MAX {
self.tick_counter = 0;
} else {
self.tick_counter += 1;
}
let loop_us = self.loop_period_us;
let now: u32 = Microseconds::try_from(self.clock.try_now()?.duration_since_epoch())
.unwrap()
.0;
let mut time_available = 0;
let loop_tick_us = now - sample_time_us;
if loop_tick_us < loop_us as _ {
time_available = loop_us as u32 - loop_tick_us;
}
time_available += self.extra_loop_us;
self.run_with_time_available(controller, time_available)?;
if self.task_not_achieved > 0 {
self.extra_loop_us = (self.extra_loop_us + 100).min(5000);
self.task_not_achieved = 0;
self.task_all_achieved = 0;
} else if (self.extra_loop_us > 0) {
self.task_all_achieved += 1;
if (self.task_all_achieved > 50) {
self.task_all_achieved = 0;
self.extra_loop_us = 0.max(self.extra_loop_us - 50);
}
}
self.loop_timer_start_us = sample_time_us;
Ok(())
}
pub fn run_with_time_available(
&mut self,
controller: &mut T,
time_available: u32,
) -> Result<(), Error> {
let mut vehicle_tasks_offset = 0;
let mut common_tasks_offset = 0;
for _ in 0..self.num_tasks {
let mut run_vehicle_task = false;
if vehicle_tasks_offset < self.vehicle_tasks.len()
&& common_tasks_offset < self.common_tasks.len()
{
let vehicle_task = &self.vehicle_tasks[vehicle_tasks_offset as usize];
let common_task = &self.common_tasks[common_tasks_offset as usize];
if vehicle_task.priority <= common_task.priority {
run_vehicle_task = true;
}
} else if vehicle_tasks_offset < self.vehicle_tasks.len() {
run_vehicle_task = true;
} else if common_tasks_offset < self.common_tasks.len() {
run_vehicle_task = false;
} else {
break;
}
let task = if run_vehicle_task {
&self.vehicle_tasks[vehicle_tasks_offset as usize]
} else {
&self.common_tasks[common_tasks_offset as usize]
};
if (run_vehicle_task) {
vehicle_tasks_offset += 1;
} else {
common_tasks_offset += 1;
}
if (task.priority > 3) {
let dt = self.tick_counter - task.last_run;
let mut interval_ticks = if task.hz == 0. {
1
} else {
self.loop_rate_hz / task.hz as i16
};
if (interval_ticks < 1) {
interval_ticks = 1;
}
if ((dt as i16) < interval_ticks) {
continue;
}
self.task_time_allowed = task.max_time_micros as _;
if (dt as i16 >= interval_ticks * 2) {
}
if (dt as i16 >= interval_ticks * self.max_task_slowdown as i16) {
self.task_not_achieved += 1;
}
if (self.task_time_allowed > time_available) {
continue;
}
} else {
self.task_time_allowed = self.loop_period_us as _;
}
let now = Milliseconds::try_from(self.clock.try_now()?.duration_since_epoch())
.unwrap()
.0;
(task.f)(State { controller, now });
}
Ok(())
}
}