embedded_devices/devices/sensirion/sen65/mod.rs
1//! The SEN65 is a particulate matter (PM), VOC, NOₓ, temperature and relative humidity sensor
2//! sensor from Sensition's SEN6x sensor module family.
3//!
4//! The SEN6x sensor module family is an air quality platform that combines critical parameters
5//! such as particulate matter, relative humidity, temperature, VOC, NOx and either CO2 or
6//! formaldehyde, all in one compact package.
7//!
8//! ## Usage (sync)
9//!
10//! ```rust
11//! # #[cfg(feature = "sync")] mod test {
12//! # fn test<I, D>(mut i2c: I, delay: D) -> Result<(), embedded_devices::devices::sensirion::sen65::TransportError<I::Error>>
13//! # where
14//! # I: embedded_hal::i2c::I2c + embedded_hal::i2c::ErrorType,
15//! # D: embedded_hal::delay::DelayNs
16//! # {
17//! use embedded_devices::devices::sensirion::sen65::{SEN65Sync, address::Address};
18//! use embedded_devices::sensor::ContinuousSensorSync;
19//! use uom::si::{
20//! mass_concentration::microgram_per_cubic_meter,
21//! ratio::percent,
22//! thermodynamic_temperature::degree_celsius,
23//! };
24//!
25//! // Create and initialize the device
26//! let mut sen65 = SEN65Sync::new_i2c(delay, i2c, Address::Default);
27//! sen65.init()?;
28//! sen65.start_measuring()?;
29//!
30//! // [...] wait ~1h for PM results to stabilize
31//! // Read measurements
32//! let measurement = sen65.next_measurement()?;
33//! let pm1 = measurement.pm1_concentration.unwrap().get::<microgram_per_cubic_meter>();
34//! let pm2_5 = measurement.pm2_5_concentration.unwrap().get::<microgram_per_cubic_meter>();
35//! let pm4 = measurement.pm4_concentration.unwrap().get::<microgram_per_cubic_meter>();
36//! let pm10 = measurement.pm10_concentration.unwrap().get::<microgram_per_cubic_meter>();
37//! let humidity = measurement.relative_humidity.unwrap().get::<percent>();
38//! let temperature = measurement.temperature.unwrap().get::<degree_celsius>();
39//! let voc_index = measurement.voc_index.unwrap().get::<percent>();
40//! let nox_index = measurement.nox_index.unwrap().get::<percent>();
41//! println!("Current measurement: {:?} µg/m³ PM1, {:?} µg/m³ PM2.5, {:?} µg/m³ PM4, {:?} µg/m³ PM10, {:?}%RH, {:?}°C, {:?} VOC, {:?} NOx",
42//! pm1, pm2_5, pm4, pm10, humidity, temperature, voc_index, nox_index
43//! );
44//! # Ok(())
45//! # }
46//! # }
47//! ```
48//!
49//! ## Usage (async)
50//!
51//! ```rust
52//! # #[cfg(feature = "async")] mod test {
53//! # async fn test<I, D>(mut i2c: I, delay: D) -> Result<(), embedded_devices::devices::sensirion::sen65::TransportError<I::Error>>
54//! # where
55//! # I: embedded_hal_async::i2c::I2c + embedded_hal_async::i2c::ErrorType,
56//! # D: embedded_hal_async::delay::DelayNs
57//! # {
58//! use embedded_devices::devices::sensirion::sen65::{SEN65Async, address::Address};
59//! use embedded_devices::sensor::ContinuousSensorAsync;
60//! use uom::si::{
61//! mass_concentration::microgram_per_cubic_meter,
62//! ratio::percent,
63//! thermodynamic_temperature::degree_celsius,
64//! };
65//!
66//! // Create and initialize the device
67//! let mut sen65 = SEN65Async::new_i2c(delay, i2c, Address::Default);
68//! sen65.init().await?;
69//! sen65.start_measuring().await?;
70//!
71//! // [...] wait ~1h for PM results to stabilize
72//! // Read measurements
73//! let measurement = sen65.next_measurement().await?;
74//! let pm1 = measurement.pm1_concentration.unwrap().get::<microgram_per_cubic_meter>();
75//! let pm2_5 = measurement.pm2_5_concentration.unwrap().get::<microgram_per_cubic_meter>();
76//! let pm4 = measurement.pm4_concentration.unwrap().get::<microgram_per_cubic_meter>();
77//! let pm10 = measurement.pm10_concentration.unwrap().get::<microgram_per_cubic_meter>();
78//! let humidity = measurement.relative_humidity.unwrap().get::<percent>();
79//! let temperature = measurement.temperature.unwrap().get::<degree_celsius>();
80//! let voc_index = measurement.voc_index.unwrap().get::<percent>();
81//! let nox_index = measurement.nox_index.unwrap().get::<percent>();
82//! println!("Current measurement: {:?} µg/m³ PM1, {:?} µg/m³ PM2.5, {:?} µg/m³ PM4, {:?} µg/m³ PM10, {:?}%RH, {:?}°C, {:?} VOC, {:?} NOx",
83//! pm1, pm2_5, pm4, pm10, humidity, temperature, voc_index, nox_index
84//! );
85//! # Ok(())
86//! # }
87//! # }
88//! ```
89
90use self::commands::{DeviceReset, GetDataReady, ReadMeasuredValues, StartContinuousMeasurement, StopMeasurement};
91use embedded_devices_derive::{forward_command_fns, sensor};
92use uom::si::f64::{MassConcentration, Ratio, ThermodynamicTemperature};
93
94pub use super::sen6x::address;
95use super::{commands::Crc8Error, sen6x::commands::DataReadyStatus};
96pub mod commands;
97
98/// Any CRC or Bus related error
99pub type TransportError<E> = embedded_interfaces::TransportError<Crc8Error, E>;
100
101/// Measurement data
102#[derive(Debug, embedded_devices_derive::Measurement)]
103pub struct Measurement {
104 /// PM1 concentration
105 #[measurement(Pm1Concentration)]
106 pub pm1_concentration: Option<MassConcentration>,
107 /// PM2.5 concentration
108 #[measurement(Pm2_5Concentration)]
109 pub pm2_5_concentration: Option<MassConcentration>,
110 /// PM4 concentration
111 #[measurement(Pm4Concentration)]
112 pub pm4_concentration: Option<MassConcentration>,
113 /// PM10 concentration
114 #[measurement(Pm10Concentration)]
115 pub pm10_concentration: Option<MassConcentration>,
116 /// Ambient relative humidity
117 #[measurement(RelativeHumidity)]
118 pub relative_humidity: Option<Ratio>,
119 /// Ambient temperature
120 #[measurement(Temperature)]
121 pub temperature: Option<ThermodynamicTemperature>,
122 /// Current VOC Index (1-500), moving average over past 24 hours. On the VOC Index scale, this
123 /// offset is always mapped to the value of 100, making the readout as easy as possible: a VOC
124 /// Index above 100 means that there are more VOCs compared to the average (e.g., induced by a
125 /// VOC event from cooking, cleaning, breathing, etc.) while a VOC Index below 100 means that
126 /// there are fewer VOCs compared to the average (e.g., induced by fresh air from an open
127 /// window, using an air purifier, etc.).
128 #[measurement(VocIndex)]
129 pub voc_index: Option<Ratio>,
130 /// Current NOx Index (1-500), moving average over past 24 hours. On the NOx Index scale, this
131 /// offset is always mapped to the value of 1, making the readout as easy as possible: an NOx
132 /// Index above 1 means that there are more NOx compounds compared to the average (e.g.,
133 /// induced by cooking on a gas stove), while an NOx Index close to 1 means that there are
134 /// (nearly) no NOx gases present, which is the case most of the time (or induced by fresh air
135 /// from an open window, using an air purifier, etc.).
136 #[measurement(NoxIndex)]
137 pub nox_index: Option<Ratio>,
138}
139
140/// The SEN65 is a particulate matter (PM), VOC, NOₓ, temperature and relative humidity sensor
141/// sensor from Sensition's SEN6x sensor module family.
142///
143/// For a full description and usage examples, refer to the [module documentation](self).
144#[maybe_async_cfg::maybe(
145 idents(
146 hal(sync = "embedded_hal", async = "embedded_hal_async"),
147 CommandInterface,
148 I2cDevice
149 ),
150 sync(feature = "sync"),
151 async(feature = "async")
152)]
153pub struct SEN65<D: hal::delay::DelayNs, I: embedded_interfaces::commands::CommandInterface> {
154 /// The delay provider
155 delay: D,
156 /// The interface to communicate with the device
157 interface: I,
158}
159
160pub trait SEN65Command {}
161
162#[maybe_async_cfg::maybe(
163 idents(hal(sync = "embedded_hal", async = "embedded_hal_async"), I2cDevice),
164 sync(feature = "sync"),
165 async(feature = "async")
166)]
167impl<D, I> SEN65<D, embedded_interfaces::i2c::I2cDevice<I, hal::i2c::SevenBitAddress>>
168where
169 I: hal::i2c::I2c<hal::i2c::SevenBitAddress> + hal::i2c::ErrorType,
170 D: hal::delay::DelayNs,
171{
172 /// Initializes a new device with the given address on the specified bus.
173 /// This consumes the I2C bus `I`.
174 ///
175 /// Before using this device, you should call the [`Self::init`] method which
176 /// initializes the device and ensures that it is working correctly.
177 #[inline]
178 pub fn new_i2c(delay: D, interface: I, address: self::address::Address) -> Self {
179 Self {
180 delay,
181 interface: embedded_interfaces::i2c::I2cDevice::new(interface, address.into()),
182 }
183 }
184}
185
186#[forward_command_fns]
187#[sensor(
188 Pm1Concentration,
189 Pm2_5Concentration,
190 Pm4Concentration,
191 Pm10Concentration,
192 RelativeHumidity,
193 Temperature,
194 VocIndex,
195 NoxIndex
196)]
197#[maybe_async_cfg::maybe(
198 idents(
199 hal(sync = "embedded_hal", async = "embedded_hal_async"),
200 CommandInterface,
201 ResettableDevice
202 ),
203 sync(feature = "sync"),
204 async(feature = "async")
205)]
206impl<D: hal::delay::DelayNs, I: embedded_interfaces::commands::CommandInterface> SEN65<D, I> {
207 /// Initializes the sensor by stopping any ongoing measurement, and resetting the device.
208 pub async fn init(&mut self) -> Result<(), TransportError<I::BusError>> {
209 use crate::device::ResettableDevice;
210
211 // Datasheet specifies 100ms before I2C communication may be started
212 self.delay.delay_ms(100).await;
213 self.reset().await?;
214
215 Ok(())
216 }
217}
218
219#[maybe_async_cfg::maybe(
220 idents(
221 hal(sync = "embedded_hal", async = "embedded_hal_async"),
222 CommandInterface,
223 ResettableDevice
224 ),
225 sync(feature = "sync"),
226 async(feature = "async")
227)]
228impl<D: hal::delay::DelayNs, I: embedded_interfaces::commands::CommandInterface> crate::device::ResettableDevice
229 for SEN65<D, I>
230{
231 type Error = TransportError<I::BusError>;
232
233 /// Resets the sensor by stopping any ongoing measurement, and resetting the device.
234 async fn reset(&mut self) -> Result<(), Self::Error> {
235 // Try to stop measurement if it is ongoing, otherwise ignore
236 let _ = self.execute::<StopMeasurement>(()).await;
237 // Reset
238 self.execute::<DeviceReset>(()).await?;
239
240 Ok(())
241 }
242}
243
244#[maybe_async_cfg::maybe(
245 idents(
246 hal(sync = "embedded_hal", async = "embedded_hal_async"),
247 CommandInterface,
248 ContinuousSensor
249 ),
250 sync(feature = "sync"),
251 async(feature = "async")
252)]
253impl<D: hal::delay::DelayNs, I: embedded_interfaces::commands::CommandInterface> crate::sensor::ContinuousSensor
254 for SEN65<D, I>
255{
256 type Error = TransportError<I::BusError>;
257 type Measurement = Measurement;
258
259 /// Starts continuous measurement.
260 async fn start_measuring(&mut self) -> Result<(), Self::Error> {
261 self.execute::<StartContinuousMeasurement>(()).await?;
262 Ok(())
263 }
264
265 /// Stops continuous measurement.
266 async fn stop_measuring(&mut self) -> Result<(), Self::Error> {
267 self.execute::<StopMeasurement>(()).await?;
268 Ok(())
269 }
270
271 /// Expected amount of time between measurements in microseconds.
272 async fn measurement_interval_us(&mut self) -> Result<u32, Self::Error> {
273 Ok(1_000_000)
274 }
275
276 /// Returns the most recent measurement.
277 async fn current_measurement(&mut self) -> Result<Option<Self::Measurement>, Self::Error> {
278 let measurement = self.execute::<ReadMeasuredValues>(()).await?;
279 Ok(Some(Measurement {
280 pm1_concentration: (measurement.read_raw_mass_concentration_pm1() != u16::MAX)
281 .then(|| measurement.read_mass_concentration_pm1()),
282 pm2_5_concentration: (measurement.read_raw_mass_concentration_pm2_5() != u16::MAX)
283 .then(|| measurement.read_mass_concentration_pm2_5()),
284 pm4_concentration: (measurement.read_raw_mass_concentration_pm4() != u16::MAX)
285 .then(|| measurement.read_mass_concentration_pm4()),
286 pm10_concentration: (measurement.read_raw_mass_concentration_pm10() != u16::MAX)
287 .then(|| measurement.read_mass_concentration_pm10()),
288 relative_humidity: (measurement.read_raw_relative_humidity() != i16::MAX)
289 .then(|| measurement.read_relative_humidity()),
290 temperature: (measurement.read_raw_temperature() != i16::MAX).then(|| measurement.read_temperature()),
291 voc_index: (!matches!(measurement.read_raw_voc_index(), i16::MAX | 0))
292 .then_some(measurement.read_voc_index()),
293 nox_index: (!matches!(measurement.read_raw_nox_index(), i16::MAX | 0))
294 .then_some(measurement.read_nox_index()),
295 }))
296 }
297
298 /// Check if new measurements are available.
299 async fn is_measurement_ready(&mut self) -> Result<bool, Self::Error> {
300 Ok(self.execute::<GetDataReady>(()).await?.read_data_ready() == DataReadyStatus::Ready)
301 }
302
303 /// Wait indefinitely until new measurements are available and return them. Checks whether data
304 /// is ready in intervals of 100ms.
305 async fn next_measurement(&mut self) -> Result<Self::Measurement, Self::Error> {
306 loop {
307 if self.is_measurement_ready().await? {
308 return self.current_measurement().await?.ok_or_else(|| {
309 TransportError::Unexpected("measurement was not ready even though we expected it to be")
310 });
311 }
312 self.delay.delay_ms(100).await;
313 }
314 }
315}