1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! This is a platform agnostic Rust driver for the CCS811 ultra-low power
//! digital VOC sensor for monitoring indoor air quality (IAQ) using
//! the [`embedded-hal`] traits.
//!
//! [`embedded-hal`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - In application mode:
//!     - Set the measurement mode. See: [`set_mode()`].
//!     - Check if there is new data ready. See: [`has_data_ready()`].
//!     - Get the algoritm and raw result data. See: [`data()`].
//!     - Get the raw data. See: [`raw_data()`].
//!     - Get the current baseline. See: [`baseline()`].
//!     - Set the baseline. See: [`set_baseline()`].
//!     - Set the environment temperature and relative humidity. See: [`set_environment()`].
//!     - Set the interrupt mode. See: [`set_interrupt_mode()`].
//!     - Set the eCO2 thresholds for interrupts. See: [`set_eco2_thresholds()`].
//! - In boot mode:
//!     - Start application. See: [`start_application()`].
//!     - Reset, erase, download and verify new application. See: [`update_application()`].
//!     - Erase application. See: [`erase_application()`].
//!     - Verify application. See: [`verify_application()`].
//!     - Download application. See: [`download_application()`].
//! - In either mode:
//!     - Get the firmware mode. See: [`firmware_mode()`].
//!     - Check whether a valid application is loaded. See: [`has_valid_app()`].
//!     - Get the hardware ID. See: [`hardware_id()`].
//!     - Get the hardware version. See: [`hardware_version()`].
//!     - Get the firmware bootloader version. See: [`firmware_bootloader_version()`].
//!     - Get the firmware application version. See: [`firmware_application_version()`].
//!     - Do a software reset. See: [`software_reset()`].
//!
//! [`set_mode()`]: trait.Ccs811AppMode.html#tymethod.set_mode
//! [`has_data_ready()`]: trait.Ccs811AppMode.html#tymethod.has_data_ready
//! [`data()`]: trait.Ccs811AppMode.html#tymethod.data
//! [`raw_data()`]: trait.Ccs811AppMode.html#tymethod.raw_data
//! [`baseline()`]: trait.Ccs811AppMode.html#tymethod.baseline
//! [`set_baseline()`]: trait.Ccs811AppMode.html#tymethod.set_baseline
//! [`set_environment()`]: trait.Ccs811AppMode.html#tymethod.set_environment
//! [`set_interrupt_mode()`]: trait.Ccs811AppMode.html#tymethod.set_interrupt_mode
//! [`set_eco2_thresholds()`]: trait.Ccs811AppMode.html#tymethod.set_eco2_thresholds
//! [`start_application()`]: trait.Ccs811BootMode.html#tymethod.start_application
//! [`update_application()`]: trait.Ccs811BootMode.html#tymethod.update_application
//! [`erase_application()`]: trait.Ccs811BootMode.html#tymethod.erase_application
//! [`verify_application()`]: trait.Ccs811BootMode.html#tymethod.verify_application
//! [`download_application()`]: trait.Ccs811BootMode.html#tymethod.download_application
//! [`firmware_mode()`]: trait.Ccs811Device.html#tymethod.firmware_mode
//! [`has_valid_app()`]: trait.Ccs811Device.html#tymethod.has_valid_app
//! [`hardware_id()`]: trait.Ccs811Device.html#tymethod.hardware_id
//! [`hardware_version()`]: trait.Ccs811Device.html#tymethod.hardware_version
//! [`firmware_bootloader_version()`]: trait.Ccs811Device.html#tymethod.firmware_bootloader_version
//! [`firmware_application_version()`]: trait.Ccs811Device.html#tymethod.firmware_application_version
//! [`software_reset()`]: trait.Ccs811Device.html#tymethod.software_reset
//!
//! <!-- TODO
//! [Introductory blog post](TODO)
//! -->
//!
//! ## The device
//!
//! The CCS811 is an ultra-low power digital gas sensor solution which
//! integrates a metal oxide (MOX) gas sensor to detect a wide range of
//! Volatile Organic Compounds (VOCs) for indoor air quality monitoring
//! with a microcontroller unit (MCU), which includes an Analog-to-Digital
//! converter (ADC), and an I²C interface.
//!
//! CCS811 is based on ams unique micro-hotplate technology which enables a
//! highly reliable solution for gas sensors, very fast cycle times and a
//! significant reduction in average power consumption.
//!
//! The integrated MCU manages the sensor driver modes and measurements.
//! The I²C digital interface significantly simplifies the hardware and
//! software design, enabling a faster time to market.
//!
//! CCS811 supports intelligent algorithms to process raw sensor measurements
//! to output equivalent total VOC (eTVOC) and equivalent CO2 (eCO2) values,
//! where the main cause of VOCs is from humans.
//!
//! CCS811 supports multiple measurement modes that have been optimized for
//! low-power consumption during an active sensor measurement and idle mode
//! extending battery life in portable applications.
//!
//! Documentation:
//! - [Datasheet](https://ams.com/documents/20143/36005/CCS811_DS000459_7-00.pdf)
//! - [Programming and interfacing guide](https://ams.com/documents/20143/36005/CCS811_AN000369_2-00.pdf)
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded_hal` implementation,
//! then instantiate the appropriate device.
//!
//! The CCS811 can be placed in sleep and woken up only for communication.
//! This driver provides two structures: `Ccs811Awake` and `Ccs811` depeding
//! on the waking state.
//!
//! The `Ccs811Awake` assumes an awake device and handles only the I2C communication.
//! This can be used when the waking up and sleep of the device is handled
//! manually.
//! Additionally a wrapper `Ccs811` is provided, which handles waking up
//! the device before each operation and putting it to sleep afterwards.
//!
//! Please find additional examples using hardware in this repository: [driver-examples]
//!
//! [driver-examples]: https://github.com/eldruin/driver-examples
//!
//! ### Start the application and take measurements
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! use embedded_ccs811::{prelude::*, Ccs811, SlaveAddr, MeasurementMode};
//! use nb::block;
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let nwake = hal::Pin::new(17);
//! let delay = hal::Delay {};
//! let address = SlaveAddr::default();
//! let sensor = Ccs811::new(dev, address, nwake, delay);
//! let mut sensor = sensor.start_application().ok().unwrap();
//! sensor.set_mode(MeasurementMode::ConstantPower1s).unwrap();
//! loop {
//!     let data = block!(sensor.data()).unwrap();
//!     println!("eCO2: {}, eTVOC: {}", data.eco2, data.etvoc);
//! }
//! # }
//! ```
//!
//! ### Save and restore the baseline
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! use embedded_ccs811::{prelude::*, Ccs811Awake, SlaveAddr};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let sensor = Ccs811Awake::new(dev, address);
//! let mut sensor = sensor.start_application().ok().unwrap();
//! let baseline = sensor.baseline().unwrap();
//! // ...
//! sensor.set_baseline(baseline).unwrap();
//! # }
//! ```
//!
//! ### Set the environment temperature and relative humidity
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! use embedded_ccs811::{prelude::*, Ccs811Awake, SlaveAddr};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let sensor = Ccs811Awake::new(dev, address);
//! let mut sensor = sensor.start_application().ok().unwrap();
//! let temp_c = 25.0;
//! let rel_humidity = 50.0;
//! sensor.set_environment(rel_humidity, temp_c).unwrap();
//! # }
//! ```
//!
//! ### Set the eCO2 thresholds and configure interrupts
//!
//! Only generate an interrupt when the thresholds are crossed.
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! use embedded_ccs811::{prelude::*, Ccs811Awake, SlaveAddr, InterruptMode, MeasurementMode};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let sensor = Ccs811Awake::new(dev, address);
//! let mut sensor = sensor.start_application().ok().unwrap();
//! sensor.set_eco2_thresholds(1500, 2500).unwrap();
//! sensor.set_interrupt_mode(InterruptMode::OnThresholdCrossed).unwrap();
//! sensor.set_mode(MeasurementMode::ConstantPower1s).unwrap();
//! # }
//! ```
//!
//! ### Get hardware and firmware information
//!
//! ```no_run
//! extern crate linux_embedded_hal as hal;
//! use embedded_ccs811::{prelude::*, Ccs811Awake, SlaveAddr};
//!
//! # fn main() {
//! let dev = hal::I2cdev::new("/dev/i2c-1").unwrap();
//! let address = SlaveAddr::default();
//! let mut sensor = Ccs811Awake::new(dev, address);
//! let hw_id = sensor.hardware_id().unwrap();
//! let hw_ver = sensor.hardware_version().unwrap();
//! let fw_boot_ver = sensor.firmware_bootloader_version().unwrap();
//! let fw_app_ver = sensor.firmware_application_version().unwrap();
//! println!(
//!     "HW ID: {}, HW version: {:#?}, FW bootloader version: {:#?}, FW app version: {:#?}",
//!     hw_id, hw_ver, fw_boot_ver, fw_app_ver
//! );
//! # }
//! ```

#![deny(unsafe_code, missing_docs)]
#![no_std]

extern crate embedded_hal as hal;
use core::marker::PhantomData;

mod common_impl;
pub mod prelude;
mod register_access;
use crate::register_access::{BitFlags, Register};
mod app_mode;
mod boot_mode;
mod traits;
pub use crate::traits::{Ccs811AppMode, Ccs811BootMode, Ccs811Device};
mod types;
pub use crate::types::{
    AlgorithmResult, DeviceError, DeviceErrors, Error, ErrorAwake, FirmwareMode, InterruptMode,
    MeasurementMode, ModeChangeError, SlaveAddr,
};

/// CCS811 device driver
///
/// Convenience wrapper arount `Ccs811Awake` which handles waking up the device on each operation.
#[derive(Debug)]
pub struct Ccs811<I2C, NWAKE, WAKEDELAY, MODE> {
    dev: Ccs811Awake<I2C, MODE>,
    n_wake_pin: NWAKE,
    wake_delay: WAKEDELAY,
    _mode: PhantomData<MODE>,
}

/// Already awake CCS811 device driver
///
/// This can be used when the nWAKE pin is connected directly to GND or when
/// handling the device waking manually instead of using the `Ccs811` wrapper type.
#[derive(Debug)]
pub struct Ccs811Awake<I2C, MODE> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    address: u8,
    meas_mode_reg: u8,
    in_progress: ActionInProgress,
    _mode: PhantomData<MODE>,
}

#[derive(Debug, PartialEq)]
enum ActionInProgress {
    None,
    Verification,
    Erase,
}

/// Mode marker
pub mod mode {
    /// Boot mode
    pub struct Boot(());
    /// App mode
    pub struct App(());
}

mod private {
    use super::{mode, Ccs811, Ccs811Awake};
    pub trait Sealed {}

    impl Sealed for mode::Boot {}
    impl Sealed for mode::App {}
    impl<I2C, NWAKE, WAKEDELAY, MODE> Sealed for Ccs811<I2C, NWAKE, WAKEDELAY, MODE> {}
    impl<I2C, MODE> Sealed for Ccs811Awake<I2C, MODE> {}
}