1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::hal::{blocking::delay::DelayUs, digital::v2::OutputPin};
use crate::{
    hal, mode, register_access::get_errors, AlgorithmResult, BitFlags, Ccs811, Ccs811AppMode,
    Ccs811Awake, Error, ErrorAwake, InterruptMode, MeasurementMode, ModeChangeError, Register,
};

impl<I2C, E> Ccs811AppMode for Ccs811Awake<I2C, mode::App>
where
    I2C: hal::blocking::i2c::Write<Error = E> + hal::blocking::i2c::WriteRead<Error = E>,
{
    type Error = ErrorAwake<E>;
    type ModeChangeError = ModeChangeError<ErrorAwake<E>, Self>;
    type BootModeType = Ccs811Awake<I2C, mode::Boot>;

    fn set_mode(&mut self, mode: MeasurementMode) -> Result<(), Self::Error> {
        let idle_mode = self.meas_mode_reg & 0b0000_1100;
        let meas_mode = match mode {
            MeasurementMode::Idle => idle_mode,
            MeasurementMode::ConstantPower1s => idle_mode | 1 << 4,
            MeasurementMode::PulseHeating10s => idle_mode | 2 << 4,
            MeasurementMode::LowPowerPulseHeating60s => idle_mode | 3 << 4,
            MeasurementMode::ConstantPower250ms => idle_mode | 4 << 4,
        };
        self.write_register_1byte(Register::MEAS_MODE, meas_mode)?;
        self.meas_mode_reg = meas_mode;
        Ok(())
    }

    fn has_data_ready(&mut self) -> Result<bool, Self::Error> {
        let status = self.read_status()?;
        Ok((status & BitFlags::DATA_READY) != 0)
    }

    fn raw_data(&mut self) -> Result<(u8, u16), Self::Error> {
        let data = self.read_register_2bytes(Register::RAW_DATA)?;
        Ok(handle_raw_data(data[0], data[1]))
    }

    fn data(&mut self) -> nb::Result<AlgorithmResult, Self::Error> {
        let mut data = [0; 8];
        self.i2c
            .write_read(self.address, &[Register::ALG_RESULT_DATA], &mut data)
            .map_err(ErrorAwake::I2C)?;
        let status = data[4];
        if (status & BitFlags::ERROR) != 0 {
            get_errors(data[5]).map_err(ErrorAwake::Device)?;
        } else if (status & BitFlags::DATA_READY) == 0 {
            return Err(nb::Error::WouldBlock);
        }
        let raw = handle_raw_data(data[6], data[7]);
        Ok(AlgorithmResult {
            eco2: (u16::from(data[0]) << 8) | u16::from(data[1]),
            etvoc: (u16::from(data[2]) << 8) | u16::from(data[3]),
            raw_current: raw.0,
            raw_voltage: raw.1,
        })
    }

    fn set_environment(
        &mut self,
        humidity_percentage: f32,
        temperature_celsius: f32,
    ) -> Result<(), Self::Error> {
        if humidity_percentage < 0.0
            || humidity_percentage > 100.0
            || temperature_celsius > 254.998_05
        {
            return Err(ErrorAwake::InvalidInputData);
        }
        let raw_humidity = get_raw_humidity(humidity_percentage);
        let raw_temp = get_raw_temperature(temperature_celsius);
        let raw = [
            Register::ENV_DATA,
            raw_humidity.0,
            raw_humidity.1,
            raw_temp.0,
            raw_temp.1,
        ];
        self.i2c
            .write(self.address, &raw)
            .map_err(ErrorAwake::I2C)?;
        self.check_status_error()
    }

    fn baseline(&mut self) -> Result<[u8; 2], Self::Error> {
        self.read_register_2bytes(Register::BASELINE)
    }

    fn set_baseline(&mut self, baseline: [u8; 2]) -> Result<(), Self::Error> {
        self.i2c
            .write(
                self.address,
                &[Register::BASELINE, baseline[0], baseline[1]],
            )
            .map_err(ErrorAwake::I2C)?;
        self.check_status_error()
    }

    fn set_eco2_thresholds(
        &mut self,
        low_to_medium: u16,
        medium_to_high: u16,
    ) -> Result<(), Self::Error> {
        self.i2c
            .write(
                self.address,
                &[
                    Register::THRESHOLDS,
                    (low_to_medium >> 8) as u8,
                    low_to_medium as u8,
                    (medium_to_high >> 8) as u8,
                    medium_to_high as u8,
                ],
            )
            .map_err(ErrorAwake::I2C)?;
        self.check_status_error()
    }

    fn set_interrupt_mode(&mut self, mode: InterruptMode) -> Result<(), Self::Error> {
        let int_mask = match mode {
            InterruptMode::Disabled => 0,
            InterruptMode::OnDataReady => BitFlags::INTERRUPT,
            InterruptMode::OnThresholdCrossed => BitFlags::INTERRUPT | BitFlags::THRESH,
        };
        let meas_mode = (self.meas_mode_reg & (0b111 << 4)) | int_mask;
        self.write_register_1byte(Register::MEAS_MODE, meas_mode)?;
        self.meas_mode_reg = meas_mode;
        Ok(())
    }

    // Note: is_verifying is false after a reset
    fn software_reset(mut self) -> Result<Self::BootModeType, Self::ModeChangeError> {
        match self.write_sw_reset() {
            Err(e) => Err(ModeChangeError::new(self, e)),
            Ok(_) => Ok(Ccs811Awake::create(self.i2c, self.address)),
        }
    }
}

fn get_raw_humidity(humidity_percentage: f32) -> (u8, u8) {
    get_raw_environment_data(humidity_percentage)
}

fn get_raw_temperature(temperature_celsius: f32) -> (u8, u8) {
    let value = temperature_celsius + 25.0;
    if value < 0.0 {
        (0, 0)
    } else {
        get_raw_environment_data(value)
    }
}

fn get_raw_environment_data(value: f32) -> (u8, u8) {
    let main = (value as u8) << 1;
    let rest = value - f32::from(value as u8);
    let rest = (rest * 512.0) as u16;
    (main | (((rest & (1 << 8)) >> 8) as u8), rest as u8)
}

fn handle_raw_data(data0: u8, data1: u8) -> (u8, u16) {
    (
        (data1 >> 2) as u8,
        u16::from(data0) | (u16::from(data1 & 0x3) << 8),
    )
}

impl<I2C, CommE, PinE, NWAKE, WAKEDELAY> Ccs811AppMode for Ccs811<I2C, NWAKE, WAKEDELAY, mode::App>
where
    I2C: hal::blocking::i2c::Write<Error = CommE> + hal::blocking::i2c::WriteRead<Error = CommE>,
    NWAKE: OutputPin<Error = PinE>,
    WAKEDELAY: DelayUs<u8>,
{
    type Error = Error<CommE, PinE>;
    type ModeChangeError = ModeChangeError<Error<CommE, PinE>, Self>;
    type BootModeType = Ccs811<I2C, NWAKE, WAKEDELAY, mode::Boot>;

    fn set_mode(&mut self, mode: MeasurementMode) -> Result<(), Self::Error> {
        self.on_awaken(|s| s.dev.set_mode(mode))
    }

    fn has_data_ready(&mut self) -> Result<bool, Self::Error> {
        self.on_awaken(|s| s.dev.has_data_ready())
    }

    fn raw_data(&mut self) -> Result<(u8, u16), Self::Error> {
        self.on_awaken(|s| s.dev.raw_data())
    }

    fn data(&mut self) -> nb::Result<AlgorithmResult, Self::Error> {
        self.on_awaken_nb(|s| s.dev.data())
    }

    fn baseline(&mut self) -> Result<[u8; 2], Self::Error> {
        self.on_awaken(|s| s.dev.baseline())
    }

    fn set_baseline(&mut self, baseline: [u8; 2]) -> Result<(), Self::Error> {
        self.on_awaken(|s| s.dev.set_baseline(baseline))
    }

    fn set_environment(
        &mut self,
        humidity_percentage: f32,
        temperature_celsius: f32,
    ) -> Result<(), Self::Error> {
        self.on_awaken(|s| {
            s.dev
                .set_environment(humidity_percentage, temperature_celsius)
        })
    }

    fn set_eco2_thresholds(
        &mut self,
        low_to_medium: u16,
        medium_to_high: u16,
    ) -> Result<(), Self::Error> {
        self.on_awaken(|s| s.dev.set_eco2_thresholds(low_to_medium, medium_to_high))
    }

    fn set_interrupt_mode(&mut self, mode: InterruptMode) -> Result<(), Self::Error> {
        self.on_awaken(|s| s.dev.set_interrupt_mode(mode))
    }

    fn software_reset(self) -> Result<Self::BootModeType, Self::ModeChangeError> {
        self.wrap_mode_change(|s| s.software_reset())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn convert_humidity() {
        assert_eq!((0, 0), get_raw_humidity(0.0));
        assert_eq!((0x64, 0), get_raw_humidity(50.0));
        assert_eq!((0x61, 0), get_raw_humidity(48.5));
        assert_eq!((0x60, 0x80), get_raw_humidity(48.25));
        assert_eq!((0x60, 0x40), get_raw_humidity(48.125));
        assert_eq!((0x60, 0x20), get_raw_humidity(48.0625));
        assert_eq!((0x60, 0x10), get_raw_humidity(48.03125));
        assert_eq!((0x60, 0x08), get_raw_humidity(48.015_625));
        assert_eq!((0x60, 0x04), get_raw_humidity(48.007_813));
        assert_eq!((0x60, 0x02), get_raw_humidity(48.003_906));
        assert_eq!((0x60, 0x01), get_raw_humidity(48.001_953));
        assert_eq!((0x61, 0xFF), get_raw_humidity(48.998_047));
    }

    #[test]
    fn convert_temperature() {
        assert_eq!((0, 0), get_raw_temperature(-25.5));
        assert_eq!((0, 0), get_raw_temperature(-25.0));
        assert_eq!((0x64, 0), get_raw_temperature(25.0));
        assert_eq!((0x61, 0), get_raw_temperature(23.5));
    }
}